- -

Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis

Mostrar el registro completo del ítem

Carrillo, AI.; Elhage, A.; Marín García, ML.; Lanterna, AE. (2019). Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis. Chemistry - A European Journal. 25(65):14928-14934. https://doi.org/10.1002/chem.201903539

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155244

Ficheros en el ítem

Metadatos del ítem

Título: Perylene-Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis
Autor: Carrillo, Adela I. Elhage, Ayda Marín García, Mª Luisa Lanterna, Anabel E.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A mechanistic study is herein presented for the use of heterogeneous photocatalysts based on perylene moieties. First, the successful immobilization of perylene diimides (PDI) on silica matrices is demonstrated, ...[+]
Palabras clave: Heterogeneous catalysis , MCM-41 , Photoredox catalysis , Reaction mechanisms , SBA-15
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201903539
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201903539
Descripción: This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 14928 14934, which has been published in final form at https://doi.org/10.1002/chem.201903539. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving
Agradecimientos:
This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation. The authors are grateful to Prof. J.C. Scaiano for his generous support.
Tipo: Artículo

References

Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766

Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766

Miranda, M. A., & Marin, M. L. (2017). Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 6, 139-149. doi:10.1016/j.cogsc.2017.05.001 [+]
Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766

Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese? Angewandte Chemie, 130(32), 10188-10228. doi:10.1002/ange.201709766

Miranda, M. A., & Marin, M. L. (2017). Photocatalytic functionalization for the synthesis of drugs and analogs. Current Opinion in Green and Sustainable Chemistry, 6, 139-149. doi:10.1016/j.cogsc.2017.05.001

Yoon, T. P. (2016). Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 49(10), 2307-2315. doi:10.1021/acs.accounts.6b00280

Pitre, S. P., McTiernan, C. D., & Scaiano, J. C. (2016). Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 49(6), 1320-1330. doi:10.1021/acs.accounts.6b00012

Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 43(1), 473-486. doi:10.1039/c3cs60188a

Schultz, D. M., & Yoon, T. P. (2014). Solar Synthesis: Prospects in Visible Light Photocatalysis. Science, 343(6174), 1239176-1239176. doi:10.1126/science.1239176

Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r

Narayanam, J. M. R., & Stephenson, C. R. J. (2011). Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 40(1), 102-113. doi:10.1039/b913880n

Sarina, S., Waclawik, E. R., & Zhu, H. (2013). Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 15(7), 1814. doi:10.1039/c3gc40450a

Qu, Y., & Duan, X. (2013). Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev., 42(7), 2568-2580. doi:10.1039/c2cs35355e

Jiang, J.-X., Li, Y., Wu, X., Xiao, J., Adams, D. J., & Cooper, A. I. (2013). Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. Macromolecules, 46(22), 8779-8783. doi:10.1021/ma402104h

Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016

Sun, H., Wang, L., Wang, Y., & Guo, X. (2018). Imide‐Functionalized Polymer Semiconductors. Chemistry – A European Journal, 25(1), 87-105. doi:10.1002/chem.201803605

Nowak-Król, A., Shoyama, K., Stolte, M., & Würthner, F. (2018). Naphthalene and perylene diimides – better alternatives to fullerenes for organic electronics? Chemical Communications, 54(98), 13763-13772. doi:10.1039/c8cc07640e

Arzoumanian, E., Ronzani, F., Trivella, A., Oliveros, E., Sarakha, M., Richard, C., … Lacombe, S. (2013). Transparent Organosilica Photocatalysts Activated by Visible Light: Photophysical and Oxidative Properties at the Gas–Solid Interface. ACS Applied Materials & Interfaces, 6(1), 275-288. doi:10.1021/am404175y

Mathew, S., & Imahori, H. (2011). Tunable, strongly-donating perylene photosensitizers for dye-sensitized solar cells. Journal of Materials Chemistry, 21(20), 7166. doi:10.1039/c1jm10993f

Wu, Y., Zhen, Y., Ma, Y., Zheng, R., Wang, Z., & Fu, H. (2010). Exceptional Intersystem Crossing in Di(perylene bisimide)s: A Structural Platform toward Photosensitizers for Singlet Oxygen Generation. The Journal of Physical Chemistry Letters, 1(17), 2499-2502. doi:10.1021/jz1008328

Würthner, F. (2004). Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun., (14), 1564-1579. doi:10.1039/b401630k

Ferrere, S., & Gregg, B. A. (2002). New perylenes for dye sensitization of TiO2. New Journal of Chemistry, 26(9), 1155-1160. doi:10.1039/b203260k

Céspedes-Guirao, F. J., B. Ropero, A., Font-Sanchis, E., Nadal, Á., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). A water-soluble perylene dye functionalised with a 17β-estradiol: a new fluorescent tool for steroid hormones. Chemical Communications, 47(29), 8307. doi:10.1039/c1cc10966a

Céspedes-Guirao, F. J., Martín-Gomis, L., Ohkubo, K., Fukuzumi, S., Fernández-Lázaro, F., & Sastre-Santos, Á. (2011). Synthesis and Photophysics of Silicon Phthalocyanine-Perylenebisimide Triads Connected through Rigid and Flexible Bridges. Chemistry - A European Journal, 17(33), 9153-9163. doi:10.1002/chem.201100320

Bodapati, J. B., & Icil, H. (2008). Highly soluble perylene diimide and oligomeric diimide dyes combining perylene and hexa(ethylene glycol) units: Synthesis, characterization, optical and electrochemical properties. Dyes and Pigments, 79(3), 224-235. doi:10.1016/j.dyepig.2008.02.009

Zhang, F., Ma, Y., Chi, Y., Yu, H., Li, Y., Jiang, T., … Shi, J. (2018). Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position. Scientific Reports, 8(1). doi:10.1038/s41598-018-26502-5

Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030

Trong On, D., Desplantier-Giscard, D., Danumah, C., & Kaliaguine, S. (2001). Perspectives in catalytic applications of mesostructured materials. Applied Catalysis A: General, 222(1-2), 299-357. doi:10.1016/s0926-860x(01)00842-0

Carrillo, A. I., García-Martínez, J., Llusar, R., Serrano, E., Sorribes, I., Vicent, C., & Alejandro Vidal-Moya, J. (2012). Incorporation of cubane-type Mo3S4 molybdenum cluster sulfides in the framework of mesoporous silica. Microporous and Mesoporous Materials, 151, 380-389. doi:10.1016/j.micromeso.2011.10.005

Garcia-Martinez, J., Linares, N., Sinibaldi, S., Coronado, E., & Ribera, A. (2009). Incorporation of Pd nanoparticles in mesostructured silica. Microporous and Mesoporous Materials, 117(1-2), 170-177. doi:10.1016/j.micromeso.2008.06.038

Sriramulu, D., Turaga, S. P., Bettiol, A. A., & Valiyaveettil, S. (2017). Molecular Organization Induced Anisotropic Properties of Perylene – Silica Hybrid Nanoparticles. Scientific Reports, 7(1). doi:10.1038/s41598-017-07892-4

Wahab, M. A., Hussain, H., & He, C. (2009). Photoactive Perylenediimide-Bridged Silsesquioxane Functionalized Periodic Mesoporous Organosilica Thin Films (PMO-SBA15): Synthesis, Self-Assembly, and Photoluminescent and Enhanced Mechanical Properties. Langmuir, 25(8), 4743-4750. doi:10.1021/la900042g

Ronzani, F., Saint-Cricq, P., Arzoumanian, E., Pigot, T., Blanc, S., Oelgemöller, M., … Lacombe, S. (2013). Immobilized Organic Photosensitizers with Versatile Reactivity for Various Visible-Light Applications. Photochemistry and Photobiology, 90(2), 358-368. doi:10.1111/php.12166

Shang, J., Tang, H., Ji, H., Ma, W., Chen, C., & Zhao, J. (2017). Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chinese Journal of Catalysis, 38(12), 2094-2101. doi:10.1016/s1872-2067(17)62960-7

Lanterna, A. E., Elhage, A., & Scaiano, J. C. (2015). Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science & Technology, 5(9), 4336-4340. doi:10.1039/c5cy00655d

Marquez, D. T., Carrillo, A. I., & Scaiano, J. C. (2013). Plasmon Excitation of Supported Gold Nanoparticles Can Control Molecular Release from Supramolecular Systems. Langmuir, 29(33), 10521-10528. doi:10.1021/la4019794

Albiter, E., Alfaro, S., & Valenzuela, M. A. (2015). Photosensitized oxidation of 9,10-dimethylanthracene with singlet oxygen by using a safranin O/silica composite under visible light. Photochemical & Photobiological Sciences, 14(3), 597-602. doi:10.1039/c4pp00261j

Prusakova, V., McCusker, C. E., & Castellano, F. N. (2012). Ligand-Localized Triplet-State Photophysics in a Platinum(II) Terpyridyl Perylenediimideacetylide. Inorganic Chemistry, 51(15), 8589-8598. doi:10.1021/ic301169t

Simonutti, R., Comotti, A., Bracco, S., & Sozzani, P. (2001). Surfactant Organization in MCM-41 Mesoporous Materials As Studied by13C and29Si Solid-State NMR. Chemistry of Materials, 13(3), 771-777. doi:10.1021/cm001088i

Cardelli, A., Ricci, L., Ruggeri, G., Borsacchi, S., & Geppi, M. (2011). Optical properties of a polyethylene dispersion with a luminescent silica prepared by surface grafting of a perylene derivative. European Polymer Journal, 47(8), 1589-1600. doi:10.1016/j.eurpolymj.2011.05.006

Prathapan, S., Yang, S. I., Seth, J., Miller, M. A., Bocian, D. F., Holten, D., & Lindsey, J. S. (2001). Synthesis and Excited-State Photodynamics of Perylene−Porphyrin Dyads. 1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker. The Journal of Physical Chemistry B, 105(34), 8237-8248. doi:10.1021/jp010335i

Ford, W. E., & Kamat, P. V. (1987). Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative. The Journal of Physical Chemistry, 91(25), 6373-6380. doi:10.1021/j100309a012

Ghirotti, M., Chiorboli, C., You, C.-C., Würthner, F., & Scandola, F. (2008). Photoinduced Energy and Electron-Transfer Processes in Porphyrin−Perylene Bisimide Symmetric Triads. The Journal of Physical Chemistry A, 112(15), 3376-3385. doi:10.1021/jp7109516

Olea, A. F., & Wilkinson, F. (1995). Singlet Oxygen Production from Excited Singlet and Triplet States of Anthracene Derivatives in Acetonitrile. The Journal of Physical Chemistry, 99(13), 4518-4524. doi:10.1021/j100013a022

Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. Journal of Physical and Chemical Reference Data, 22(1), 113-262. doi:10.1063/1.555934

Zhao, Y. Z., Li, K. X., Ding, S. Y., Zhu, M., Ren, H. P., Ma, Q., … Miao, Z. C. (2018). The Effect of Reduction Potential on the Generation of the Perylene Diimide Radical Anions. Russian Journal of Physical Chemistry A, 92(7), 1261-1265. doi:10.1134/s003602441807035x

Daw, P., Petakamsetty, R., Sarbajna, A., Laha, S., Ramapanicker, R., & Bera, J. K. (2014). A Highly Efficient Catalyst for Selective Oxidative Scission of Olefins to Aldehydes: Abnormal-NHC–Ru(II) Complex in Oxidation Chemistry. Journal of the American Chemical Society, 136(40), 13987-13990. doi:10.1021/ja5075294

Nyawade, E. A., Friedrich, H. B., Omondi, B., & Mpungose, P. (2015). Synthesis and Characterization of New (η5-Cyclopentadienyl)dicarbonylruthenium(II) Amine Complexes: Their Application as Homogeneous Catalysts in Styrene Oxidation. Organometallics, 34(20), 4922-4931. doi:10.1021/acs.organomet.5b00564

Muthumari, S., & Ramesh, R. (2018). Synthesis and Structure of Ru(II) Complexes of Thiosemicarbazone: Highly Selective Catalysts for Oxidative Scission of Olefins to Aldehydes. ChemistrySelect, 3(11), 3036-3041. doi:10.1002/slct.201800163

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem