Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103
Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666
Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402
[+]
Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103
Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666
Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402
Smith, C. A., Wang, M., Jiang, N., Che, L., Zhao, X., & Taylor, J.-S. (1996). Mutation Spectra of M13 Vectors Containing Site-Specific Cis-Syn, Trans-Syn-I, (6−4), and Dewar Pyrimidone Photoproducts of Thymidylyl-(3‘→5‘)-Thymidine inEscherichia coliunder SOS Conditions†. Biochemistry, 35(13), 4146-4154. doi:10.1021/bi951975c
Gentil, A. (1996). Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells. Nucleic Acids Research, 24(10), 1837-1840. doi:10.1093/nar/24.10.1837
Görner, H. (1990). Phosphorescence of nucleic acids and DNA components at 77 K. Journal of Photochemistry and Photobiology B: Biology, 5(3-4), 359-377. doi:10.1016/1011-1344(90)85051-w
Lamola, A. A., & Eisinger, J. (1971). Excited states of nucleotides in water at room temperature. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 240(3), 313-325. doi:10.1016/0005-2787(71)90524-7
Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h
Blancafort, L., & Voityuk, A. A. (2018). Thermally induced hopping model for long-range triplet excitation energy transfer in DNA. Physical Chemistry Chemical Physics, 20(7), 4997-5000. doi:10.1039/c7cp07811k
Antusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Elucidation of the Dexter-Type Energy Transfer in DNA by Thymine-Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065
Antusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Aufklärung des Dexter-Energietransfers in DNA an der Thymin-Thymin-Dimerbildung mithilfe von Photosensibilisatoren als artifizielle Nucleoside. Angewandte Chemie, 129(5), 1406-1410. doi:10.1002/ange.201610065
Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175a
Giese, B., Amaudrut, J., Köhler, A.-K., Spormann, M., & Wessely, S. (2001). Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 412(6844), 318-320. doi:10.1038/35085542
Giese, B. (2000). Long-Distance Charge Transport in DNA: The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040b
Takada, T., Kawai, K., Fujitsuka, M., & Majima, T. (2004). Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences, 101(39), 14002-14006. doi:10.1073/pnas.0402756101
Takada, T., Kawai, K., Cai, X., Sugimoto, A., Fujitsuka, M., & Majima, T. (2004). Charge Separation in DNA via Consecutive Adenine Hopping. Journal of the American Chemical Society, 126(4), 1125-1129. doi:10.1021/ja035730w
Takada, T., Fujitsuka, M., & Majima, T. (2007). Single-molecule observation of DNA charge transfer. Proceedings of the National Academy of Sciences, 104(27), 11179-11183. doi:10.1073/pnas.0700795104
Kawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079s
Kawai, K., Kodera, H., Osakada, Y., & Majima, T. (2009). Sequence-independent and rapid long-range charge transfer through DNA. Nature Chemistry, 1(2), 156-159. doi:10.1038/nchem.171
Kawai, K., Kodera, H., & Majima, T. (2010). Long-Range Charge Transfer through DNA by Replacing Adenine with Diaminopurine. Journal of the American Chemical Society, 132(2), 627-630. doi:10.1021/ja907409z
Giese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie International Edition, 43(14), 1848-1851. doi:10.1002/anie.200353264
Giese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie, 116(14), 1884-1887. doi:10.1002/ange.200353264
Park, M. J., Fujitsuka, M., Kawai, K., & Majima, T. (2011). Direct Measurement of the Dynamics of Excess Electron Transfer through Consecutive Thymine Sequence in DNA. Journal of the American Chemical Society, 133(39), 15320-15323. doi:10.1021/ja2068017
Lin, S.-H., Fujitsuka, M., & Majima, T. (2016). Excess-Electron Transfer in DNA by a Fluctuation-Assisted Hopping Mechanism. The Journal of Physical Chemistry B, 120(4), 660-666. doi:10.1021/acs.jpcb.5b10857
Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Complex Sequence Dependence by Excess-Electron Transfer through DNA with Different Strength Electron Acceptors. Angewandte Chemie International Edition, 45(2), 318-321. doi:10.1002/anie.200502551
Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Komplexe Sequenzabhängigkeit beim Transport von Überschusselektronen durch DNA mit verschieden starken Acceptoren. Angewandte Chemie, 118(2), 325-328. doi:10.1002/ange.200502551
Heil, K., Pearson, D., & Carell, T. (2011). Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem. Soc. Rev., 40(8), 4271-4278. doi:10.1039/c000407n
Haas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie International Edition, 43(14), 1842-1844. doi:10.1002/anie.200353067
Haas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie, 116(14), 1878-1880. doi:10.1002/ange.200353067
Carell, T. (1995). Sunlight-Damaged DNA Repaired with Sunlight. Angewandte Chemie International Edition in English, 34(22), 2491-2494. doi:10.1002/anie.199524911
Carell, T. (1995). Reparatur von sonnenlichtgeschädigter DNA mit Sonnenlicht. Angewandte Chemie, 107(22), 2697-2700. doi:10.1002/ange.19951072207
Breeger, S., Hennecke, U., & Carell, T. (2004). Excess Electron-Transfer-Based Repair of a Cis-Syn Thymine Dimer in DNA Is Not Sequence Dependent. Journal of the American Chemical Society, 126(5), 1302-1303. doi:10.1021/ja038358t
Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e
Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0
Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428
Schreier, W. J., Kubon, J., Regner, N., Haiser, K., Schrader, T. E., Zinth, W., … Gilch, P. (2009). Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. Journal of the American Chemical Society, 131(14), 5038-5039. doi:10.1021/ja900436t
Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355
Douki, T., Bérard, I., Wack, A., & Andrä, S. (2014). Contribution of Cytosine-Containing Cyclobutane Dimers to DNA Damage Produced by Photosensitized Triplet-Triplet Energy Transfer. Chemistry - A European Journal, 20(19), 5787-5794. doi:10.1002/chem.201303905
Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344
Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719
Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage: Paterno−Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249g
Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394
Joseph, A., Prakash, G., & Falvey, D. E. (2000). Model Studies of the (6−4) Photoproduct Photolyase Enzyme: Laser Flash Photolysis Experiments Confirm Radical Ion Intermediates in the Sensitized Repair of Thymine Oxetane Adducts. Journal of the American Chemical Society, 122(45), 11219-11225. doi:10.1021/ja002541u
Liu, X.-L., Wang, J.-B., Tong, Y., & Song, Q.-H. (2013). Regioselectivity and Competition of the Paternò-Büchi Reaction and Triplet-Triplet Energy Transfer between Triplet Benzophenones and Pyrimidines: Control by Triplet Energy Levels. Chemistry - A European Journal, 19(39), 13216-13223. doi:10.1002/chem.201300958
Zuo, Z., Yao, S., Luo, J., Wang, W., Zhang, J., & Lin, N. (1992). Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 15(3), 215-222. doi:10.1016/1011-1344(92)85125-e
Miro, P., Vayá, I., Sastre, G., Jiménez, M. C., Marin, M. L., & Miranda, M. A. (2016). Triplet energy management between two signaling units through cooperative rigid scaffolds. Chemical Communications, 52(4), 713-716. doi:10.1039/c5cc08102e
[-]