- -

Generation of the Thymine Triplet State by Through-Bond Energy Transfer

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Generation of the Thymine Triplet State by Through-Bond Energy Transfer

Show simple item record

Files in this item

dc.contributor.author Miró, Paula es_ES
dc.contributor.author Gomez-Mendoza, Miguel es_ES
dc.contributor.author SASTRE NAVARRO, GERMAN IGNACIO es_ES
dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.date.accessioned 2020-11-18T04:31:50Z
dc.date.available 2020-11-18T04:31:50Z
dc.date.issued 2019-05-17 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155246
dc.description This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 7004 7011, which has been published in final form at https://doi.org/10.1002/chem.201900830. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Benzophenone (BP) and drugs containing the BP chromophore, such as the non-steroidal anti-inflammatory drug ketoprofen, have been widely reported as DNA photo-sensitizers through triplet-triplet energy transfer (TTET). In the present work, a direct spectroscopic fingerprint for the formation of the thymine triplet ((3)Thy*) by through-bond (TB) TTET from (BP)-B-3* has been uncovered. This has been achieved in two new systems that have been designed and synthesized with one BP and one thymine (Thy) covalently linked to the two ends of the rigid skeleton of the natural bile acids cholic and lithocholic acid. The results shown here prove that it is possible to achieve triplet energy transfer to a Thy unit even when the photosensitizer is at a long (non-bonding) distance. es_ES
dc.description.sponsorship Financial support from the Spanish Government (Grant SEV-2016-0683 and Projects CTQ2012-38754-C03-03 and CTQ2015-70164P), the Generalitat Valenciana (Prometeo Program), and the Universitat Politecnica de Valencia (pre-doctoral FPI fellowship for P.M.) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject DNA damage es_ES
dc.subject Energy transfer es_ES
dc.subject Laser flash photolysis es_ES
dc.subject Photochemistry es_ES
dc.subject Steroids es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Generation of the Thymine Triplet State by Through-Bond Energy Transfer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201900830 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-38754-C03-03/ES/DESARROLLO DE NUEVAS ESTRATEGIAS BASADAS EN LA INTEGRACION DE PROCESOS FOTOQUIMICOS SOLARES CON OTRAS TECNICAS AVANZADAS PARA EL TRATAMIENTO DE AGUAS RESIDUALES COMPLEJAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Miró, P.; Gomez-Mendoza, M.; Sastre Navarro, GI.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ.; Marín García, ML. (2019). Generation of the Thymine Triplet State by Through-Bond Energy Transfer. Chemistry - A European Journal. 25(28):7004-7011. https://doi.org/10.1002/chem.201900830 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201900830 es_ES
dc.description.upvformatpinicio 7004 es_ES
dc.description.upvformatpfin 7011 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 28 es_ES
dc.identifier.pmid 30920069 es_ES
dc.relation.pasarela S\404246 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103 es_ES
dc.description.references Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666 es_ES
dc.description.references Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402 es_ES
dc.description.references Smith, C. A., Wang, M., Jiang, N., Che, L., Zhao, X., & Taylor, J.-S. (1996). Mutation Spectra of M13 Vectors Containing Site-Specific Cis-Syn, Trans-Syn-I, (6−4), and Dewar Pyrimidone Photoproducts of Thymidylyl-(3‘→5‘)-Thymidine inEscherichia coliunder SOS Conditions†. Biochemistry, 35(13), 4146-4154. doi:10.1021/bi951975c es_ES
dc.description.references Gentil, A. (1996). Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells. Nucleic Acids Research, 24(10), 1837-1840. doi:10.1093/nar/24.10.1837 es_ES
dc.description.references Görner, H. (1990). Phosphorescence of nucleic acids and DNA components at 77 K. Journal of Photochemistry and Photobiology B: Biology, 5(3-4), 359-377. doi:10.1016/1011-1344(90)85051-w es_ES
dc.description.references Lamola, A. A., & Eisinger, J. (1971). Excited states of nucleotides in water at room temperature. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 240(3), 313-325. doi:10.1016/0005-2787(71)90524-7 es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h es_ES
dc.description.references Blancafort, L., & Voityuk, A. A. (2018). Thermally induced hopping model for long-range triplet excitation energy transfer in DNA. Physical Chemistry Chemical Physics, 20(7), 4997-5000. doi:10.1039/c7cp07811k es_ES
dc.description.references Antusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Elucidation of the Dexter-Type Energy Transfer in DNA by Thymine-Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065 es_ES
dc.description.references Antusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Aufklärung des Dexter-Energietransfers in DNA an der Thymin-Thymin-Dimerbildung mithilfe von Photosensibilisatoren als artifizielle Nucleoside. Angewandte Chemie, 129(5), 1406-1410. doi:10.1002/ange.201610065 es_ES
dc.description.references Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175a es_ES
dc.description.references Giese, B., Amaudrut, J., Köhler, A.-K., Spormann, M., & Wessely, S. (2001). Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 412(6844), 318-320. doi:10.1038/35085542 es_ES
dc.description.references Giese, B. (2000). Long-Distance Charge Transport in DNA:  The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040b es_ES
dc.description.references Takada, T., Kawai, K., Fujitsuka, M., & Majima, T. (2004). Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences, 101(39), 14002-14006. doi:10.1073/pnas.0402756101 es_ES
dc.description.references Takada, T., Kawai, K., Cai, X., Sugimoto, A., Fujitsuka, M., & Majima, T. (2004). Charge Separation in DNA via Consecutive Adenine Hopping. Journal of the American Chemical Society, 126(4), 1125-1129. doi:10.1021/ja035730w es_ES
dc.description.references Takada, T., Fujitsuka, M., & Majima, T. (2007). Single-molecule observation of DNA charge transfer. Proceedings of the National Academy of Sciences, 104(27), 11179-11183. doi:10.1073/pnas.0700795104 es_ES
dc.description.references Kawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079s es_ES
dc.description.references Kawai, K., Kodera, H., Osakada, Y., & Majima, T. (2009). Sequence-independent and rapid long-range charge transfer through DNA. Nature Chemistry, 1(2), 156-159. doi:10.1038/nchem.171 es_ES
dc.description.references Kawai, K., Kodera, H., & Majima, T. (2010). Long-Range Charge Transfer through DNA by Replacing Adenine with Diaminopurine. Journal of the American Chemical Society, 132(2), 627-630. doi:10.1021/ja907409z es_ES
dc.description.references Giese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie International Edition, 43(14), 1848-1851. doi:10.1002/anie.200353264 es_ES
dc.description.references Giese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie, 116(14), 1884-1887. doi:10.1002/ange.200353264 es_ES
dc.description.references Park, M. J., Fujitsuka, M., Kawai, K., & Majima, T. (2011). Direct Measurement of the Dynamics of Excess Electron Transfer through Consecutive Thymine Sequence in DNA. Journal of the American Chemical Society, 133(39), 15320-15323. doi:10.1021/ja2068017 es_ES
dc.description.references Lin, S.-H., Fujitsuka, M., & Majima, T. (2016). Excess-Electron Transfer in DNA by a Fluctuation-Assisted Hopping Mechanism. The Journal of Physical Chemistry B, 120(4), 660-666. doi:10.1021/acs.jpcb.5b10857 es_ES
dc.description.references Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Complex Sequence Dependence by Excess-Electron Transfer through DNA with Different Strength Electron Acceptors. Angewandte Chemie International Edition, 45(2), 318-321. doi:10.1002/anie.200502551 es_ES
dc.description.references Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Komplexe Sequenzabhängigkeit beim Transport von Überschusselektronen durch DNA mit verschieden starken Acceptoren. Angewandte Chemie, 118(2), 325-328. doi:10.1002/ange.200502551 es_ES
dc.description.references Heil, K., Pearson, D., & Carell, T. (2011). Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem. Soc. Rev., 40(8), 4271-4278. doi:10.1039/c000407n es_ES
dc.description.references Haas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie International Edition, 43(14), 1842-1844. doi:10.1002/anie.200353067 es_ES
dc.description.references Haas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie, 116(14), 1878-1880. doi:10.1002/ange.200353067 es_ES
dc.description.references Carell, T. (1995). Sunlight-Damaged DNA Repaired with Sunlight. Angewandte Chemie International Edition in English, 34(22), 2491-2494. doi:10.1002/anie.199524911 es_ES
dc.description.references Carell, T. (1995). Reparatur von sonnenlichtgeschädigter DNA mit Sonnenlicht. Angewandte Chemie, 107(22), 2697-2700. doi:10.1002/ange.19951072207 es_ES
dc.description.references Breeger, S., Hennecke, U., & Carell, T. (2004). Excess Electron-Transfer-Based Repair of a Cis-Syn Thymine Dimer in DNA Is Not Sequence Dependent. Journal of the American Chemical Society, 126(5), 1302-1303. doi:10.1021/ja038358t es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Delatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0 es_ES
dc.description.references Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428 es_ES
dc.description.references Schreier, W. J., Kubon, J., Regner, N., Haiser, K., Schrader, T. E., Zinth, W., … Gilch, P. (2009). Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. Journal of the American Chemical Society, 131(14), 5038-5039. doi:10.1021/ja900436t es_ES
dc.description.references Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355 es_ES
dc.description.references Douki, T., Bérard, I., Wack, A., & Andrä, S. (2014). Contribution of Cytosine-Containing Cyclobutane Dimers to DNA Damage Produced by Photosensitized Triplet-Triplet Energy Transfer. Chemistry - A European Journal, 20(19), 5787-5794. doi:10.1002/chem.201303905 es_ES
dc.description.references Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344 es_ES
dc.description.references Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719 es_ES
dc.description.references Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage:  Paterno−Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249g es_ES
dc.description.references Trzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394 es_ES
dc.description.references Joseph, A., Prakash, G., & Falvey, D. E. (2000). Model Studies of the (6−4) Photoproduct Photolyase Enzyme:  Laser Flash Photolysis Experiments Confirm Radical Ion Intermediates in the Sensitized Repair of Thymine Oxetane Adducts. Journal of the American Chemical Society, 122(45), 11219-11225. doi:10.1021/ja002541u es_ES
dc.description.references Liu, X.-L., Wang, J.-B., Tong, Y., & Song, Q.-H. (2013). Regioselectivity and Competition of the Paternò-Büchi Reaction and Triplet-Triplet Energy Transfer between Triplet Benzophenones and Pyrimidines: Control by Triplet Energy Levels. Chemistry - A European Journal, 19(39), 13216-13223. doi:10.1002/chem.201300958 es_ES
dc.description.references Zuo, Z., Yao, S., Luo, J., Wang, W., Zhang, J., & Lin, N. (1992). Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 15(3), 215-222. doi:10.1016/1011-1344(92)85125-e es_ES
dc.description.references Miro, P., Vayá, I., Sastre, G., Jiménez, M. C., Marin, M. L., & Miranda, M. A. (2016). Triplet energy management between two signaling units through cooperative rigid scaffolds. Chemical Communications, 52(4), 713-716. doi:10.1039/c5cc08102e es_ES


This item appears in the following Collection(s)

Show simple item record