- -

Pressure-Induced Phase Transitions in Sesquioxides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pressure-Induced Phase Transitions in Sesquioxides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Manjón, Francisco-Javier es_ES
dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Ibáñez, Jordi es_ES
dc.contributor.author Pereira, André Luis de Jesús es_ES
dc.date.accessioned 2020-11-21T04:31:19Z
dc.date.available 2020-11-21T04:31:19Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155434
dc.description.abstract [EN] Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A(2)O(3) compounds. Sesquioxides constitute a big subfamily of ABO(3) compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet's crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted. es_ES
dc.description.sponsorship This research was funded by Spanish Ministerio de Ciencia, Innovacion y Universidades under grants MAT2016-75586-C4-1/2/3-P, FIS2017-83295-P, PGC2018-094417-B-100, and RED2018-102612-T (MALTA-Consolider-Team network) and by Generalitat Valenciana under grant PROMETEO/2018/123 (EFIMAT). J. A. S. also acknowledges Ramon y Cajal Fellowship for financial support (RYC-2015-17482). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Crystals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sesquioxides es_ES
dc.subject High pressure es_ES
dc.subject Phase transitions es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Pressure-Induced Phase Transitions in Sesquioxides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/cryst9120630 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094417-B-I00/ES/APROXIMACIONES RACIONALES PARA EL DISEÑO DE NUEVOS MATERIALES MEDIANTE LA COMBINACION DE TEORIA Y EXPERIMENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Manjón, F.; Sans-Tresserras, JÁ.; Ibáñez, J.; Pereira, ALDJ. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals. 9(12):1-32. https://doi.org/10.3390/cryst9120630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/cryst9120630 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2073-4352 es_ES
dc.relation.pasarela S\403143 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Adachi, G., & Imanaka, N. (1998). The Binary Rare Earth Oxides. Chemical Reviews, 98(4), 1479-1514. doi:10.1021/cr940055h es_ES
dc.description.references ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002 es_ES
dc.description.references Manjón, F. J., & Errandonea, D. (2008). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238 es_ES
dc.description.references Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163 es_ES
dc.description.references Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043 es_ES
dc.description.references Vegas, A., & Isea, R. (1998). Distribution of the M-M Distances in the Rare Earth Oxides. Acta Crystallographica Section B Structural Science, 54(6), 732-740. doi:10.1107/s0108768198003759 es_ES
dc.description.references Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301 es_ES
dc.description.references Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187 es_ES
dc.description.references Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421 es_ES
dc.description.references Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015 es_ES
dc.description.references Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223 es_ES
dc.description.references Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663 es_ES
dc.description.references Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219 es_ES
dc.description.references Lonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022 es_ES
dc.description.references Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027 es_ES
dc.description.references Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832 es_ES
dc.description.references Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341 es_ES
dc.description.references Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720 es_ES
dc.description.references Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027 es_ES
dc.description.references Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229 es_ES
dc.description.references Chen, C.-S., Cheung, K., & Yuan, T.-C. (2007). Novel collider signatures for Little Higgs dark matter models. Physics Letters B, 644(2-3), 158-164. doi:10.1016/j.physletb.2006.11.050 es_ES
dc.description.references Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114 es_ES
dc.description.references Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703 es_ES
dc.description.references Dilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913 es_ES
dc.description.references Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019 es_ES
dc.description.references Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504 es_ES
dc.description.references Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889v es_ES
dc.description.references Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391 es_ES
dc.description.references Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.351 es_ES
dc.description.references Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705 es_ES
dc.description.references Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082 es_ES
dc.description.references Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701 es_ES
dc.description.references Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y<SUB>2</SUB>O<SUB>3</SUB>:Eu<SUP>3+</SUP> Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752 es_ES
dc.description.references DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-x es_ES
dc.description.references Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042z es_ES
dc.description.references Bose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036 es_ES
dc.description.references Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028 es_ES
dc.description.references Zhang, Q., Wu, X., & Qin, S. (2017). Pressure-induced phase transition of B-type Y 2 O 3. Chinese Physics B, 26(9), 090703. doi:10.1088/1674-1056/26/9/090703 es_ES
dc.description.references Chen, G., Peterson, J. R., & Brister, K. E. (1994). An Energy-Dispersive X-Ray Diffraction Study of Monoclinic Eu2O3 under Pressure. Journal of Solid State Chemistry, 111(2), 437-439. doi:10.1006/jssc.1994.1250 es_ES
dc.description.references Atou, T., Kusaba, K., Tsuchida, Y., Utsumi, W., Yagi, T., & Syono, Y. (1989). Reversible B-type - A-type transition of Sm2O3 under high pressure. Materials Research Bulletin, 24(9), 1171-1176. doi:10.1016/0025-5408(89)90076-7 es_ES
dc.description.references Hongo, T., Kondo, K., Nakamura, K. G., & Atou, T. (2007). High pressure Raman spectroscopic study of structural phase transition in samarium oxide. Journal of Materials Science, 42(8), 2582-2585. doi:10.1007/s10853-006-1417-5 es_ES
dc.description.references Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154g es_ES
dc.description.references Pandey, K. K., Garg, N., Mishra, A. K., & Sharma, S. M. (2012). High pressure phase transition in Nd2O3. Journal of Physics: Conference Series, 377, 012006. doi:10.1088/1742-6596/377/1/012006 es_ES
dc.description.references Jiang, S., Liu, J., Bai, L., Li, X., Li, Y., He, S., … Liang, D. (2018). Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Advances, 8(2), 025019. doi:10.1063/1.5018020 es_ES
dc.description.references Lipp, M. J., Jeffries, J. R., Cynn, H., Park Klepeis, J.-H., Evans, W. J., Mortensen, D. R., … Chow, P. (2016). Comparison of the high-pressure behavior of the cerium oxidesCe2O3andCeO2. Physical Review B, 93(6). doi:10.1103/physrevb.93.064106 es_ES
dc.description.references Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5 es_ES
dc.description.references Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103 es_ES
dc.description.references Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118 es_ES
dc.description.references WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1 es_ES
dc.description.references Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267 es_ES
dc.description.references Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068 es_ES
dc.description.references Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022 es_ES
dc.description.references Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105 es_ES
dc.description.references Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206 es_ES
dc.description.references Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236 es_ES
dc.description.references Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497a es_ES
dc.description.references Pathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668 es_ES
dc.description.references Catlow, C. R. A., Guo, Z. X., Miskufova, M., Shevlin, S. A., Smith, A. G. H., Sokol, A. A., … Woodley, S. M. (2010). Advances in computational studies of energy materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3379-3456. doi:10.1098/rsta.2010.0111 es_ES
dc.description.references Caracas, R. (2005). Prediction of a new phase transition in Al2O3at high pressures. Geophysical Research Letters, 32(6). doi:10.1029/2004gl022204 es_ES
dc.description.references Funamori, N. (1997). High-Pressure Transformation of Al2O3. Science, 278(5340), 1109-1111. doi:10.1126/science.278.5340.1109 es_ES
dc.description.references Jephcoat, A. P., Hemley, R. J., & Mao, H. K. (1988). X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Physica B+C, 150(1-2), 115-121. doi:10.1016/0378-4363(88)90112-x es_ES
dc.description.references Dewaele, A., & Torrent, M. (2013). Equation of state ofα-Al2O3. Physical Review B, 88(6). doi:10.1103/physrevb.88.064107 es_ES
dc.description.references Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278-4284. doi:10.1021/jp983791o es_ES
dc.description.references Hart, H. V., & Drickamer, H. G. (1965). Effect of High Pressure on the Lattice Parameters of Al2O3. The Journal of Chemical Physics, 43(7), 2265-2266. doi:10.1063/1.1697121 es_ES
dc.description.references Mashimo, T., Tsumoto, K., Nakamura, K., Noguchi, Y., Fukuoka, K., & Syono, Y. (2000). High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophysical Research Letters, 27(14), 2021-2024. doi:10.1029/2000gl008490 es_ES
dc.description.references ONO, S., OGANOV, A., KOYAMA, T., & SHIMIZU, H. (2006). Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246(3-4), 326-335. doi:10.1016/j.epsl.2006.04.017 es_ES
dc.description.references Zhao, J., Hearne, G. R., Maaza, M., Laher-Lacour, F., Witcomb, M. J., Le Bihan, T., & Mezouar, M. (2001). Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. Journal of Applied Physics, 90(7), 3280-3285. doi:10.1063/1.1394915 es_ES
dc.description.references Thomson, K. T., Wentzcovitch, R. M., & Bukowinski, M. S. T. (1996). Polymorphs of Alumina Predicted by First Principles: Putting Pressure on the Ruby Pressure Scale. Science, 274(5294), 1880-1882. doi:10.1126/science.274.5294.1880 es_ES
dc.description.references Jahn, S., Madden, P., & Wilson, M. (2004). Dynamic simulation of pressure-driven phase transformations in crystalline Al2O3. Physical Review B, 69(2). doi:10.1103/physrevb.69.020106 es_ES
dc.description.references Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2005). Transition from theRh2O3(II)-to-CaIrO3structure and the high-pressure-temperature phase diagram of alumina. Physical Review B, 72(2). doi:10.1103/physrevb.72.020103 es_ES
dc.description.references García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599 es_ES
dc.description.references Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107 es_ES
dc.description.references Sans, J. A., Vilaplana, R., Errandonea, D., Cuenca-Gotor, V. P., García-Domene, B., Popescu, C., … Muñoz, A. (2017). Structural and vibrational properties of corundum-type In2O3nanocrystals under compression. Nanotechnology, 28(20), 205701. doi:10.1088/1361-6528/aa6a3f es_ES
dc.description.references Lipinska-Kalita, K. E., Chen, B., Kruger, M. B., Ohki, Y., Murowchick, J., & Gogol, E. P. (2003). High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic mediumK2O−SiO2−Ga2O3. Physical Review B, 68(3). doi:10.1103/physrevb.68.035209 es_ES
dc.description.references Luan, S., Dong, L., & Jia, R. (2019). Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. Journal of Crystal Growth, 505, 74-81. doi:10.1016/j.jcrysgro.2018.09.031 es_ES
dc.description.references Machon, D., McMillan, P. F., Xu, B., & Dong, J. (2006). High-pressure study of theβ-to-αtransition inGa2O3. Physical Review B, 73(9). doi:10.1103/physrevb.73.094125 es_ES
dc.description.references Wang, H., He, Y., Chen, W., Zeng, Y. W., Stahl, K., Kikegawa, T., & Jiang, J. Z. (2010). High-pressure behavior of β-Ga2O3 nanocrystals. Journal of Applied Physics, 107(3), 033520. doi:10.1063/1.3296121 es_ES
dc.description.references Claussen, W. F., & Mackenzie, J. D. (1959). CRYSTALLIZATION OF B2O3AT HIGH PRESSURES1. Journal of the American Chemical Society, 81(4), 1007-1007. doi:10.1021/ja01513a063 es_ES
dc.description.references Brazhkin, V. V., Katayama, Y., Inamura, Y., Kondrin, M. V., Lyapin, A. G., Popova, S. V., & Voloshin, R. N. (2003). Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. Journal of Experimental and Theoretical Physics Letters, 78(6), 393-397. doi:10.1134/1.1630134 es_ES
dc.description.references Nicholas, J., Sinogeikin, S., Kieffer, J., & Bass, J. (2004). Spectroscopic Evidence of Polymorphism in VitreousB2O3. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.215701 es_ES
dc.description.references Lee, S. K., Mibe, K., Fei, Y., Cody, G. D., & Mysen, B. O. (2005). Structure ofB2O3Glass at High Pressure: AB11Solid-State NMR Study. Physical Review Letters, 94(16). doi:10.1103/physrevlett.94.165507 es_ES
dc.description.references Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241 es_ES
dc.description.references Weir, S. T., Mitchell, A. C., & Nellis, W. J. (1996). Electrical resistivity of single‐crystal Al2O3shock‐compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). Journal of Applied Physics, 80(3), 1522-1525. doi:10.1063/1.362946 es_ES
dc.description.references Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 es_ES
dc.description.references Song, H. I., Kim, E. S., & Yoon, K. H. (1988). Phase transformation and characteristics of beta-alumina. Physica B+C, 150(1-2), 148-159. doi:10.1016/0378-4363(88)90117-9 es_ES
dc.description.references ENGÜRLÜ, S., TAŞLIÇUKUR ÖZTÜRK, Z., & KUŞKONMAZ, N. (2017). Investigation of the Production of β-Al2O3 Solid Electrolyte from Seydişehir α-Al2O3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 816. doi:10.19113/sdufbed.31721 es_ES
dc.description.references Duan, W., Wentzcovitch, R. M., & Thomson, K. T. (1998). First-principles study of high-pressure alumina polymorphs. Physical Review B, 57(17), 10363-10369. doi:10.1103/physrevb.57.10363 es_ES
dc.description.references Oganov, A. R., & Ono, S. (2005). The high-pressure phase of alumina and implications for Earth’s D’’ layer. Proceedings of the National Academy of Sciences, 102(31), 10828-10831. doi:10.1073/pnas.0501800102 es_ES
dc.description.references Hama, J., & Suito, K. (2002). The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temperatures-High Pressures, 34(3), 323-334. doi:10.1068/htjr033 es_ES
dc.description.references Ono, S., Kikegawa, T., & Ohishi, Y. (2004). High-pressure phase transition of hematite, Fe2O3. Journal of Physics and Chemistry of Solids, 65(8-9), 1527-1530. doi:10.1016/j.jpcs.2003.11.042 es_ES
dc.description.references Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445-448. doi:10.1038/nature02701 es_ES
dc.description.references Vaidya, S. N. (1999). High-pressure high-temperature transitions in nanocrystallineγ Al2O3,γ Fe2O3 and TiO2. Bulletin of Materials Science, 22(3), 287-293. doi:10.1007/bf02749933 es_ES
dc.description.references Mishra, R. S., Lesher, C. E., & Mukherjee, A. K. (1996). High-Pressure Sintering of Nanocrystalline gammaAl2O3. Journal of the American Ceramic Society, 79(11), 2989-2992. doi:10.1111/j.1151-2916.1996.tb08741.x es_ES
dc.description.references Vaidya, S. N., Karunakaran, C., Kamath, R. V., Pillai, K. T., & Vaidya, V. N. (1999). New polymorphs of alumina. High Pressure Research, 16(3), 147-160. doi:10.1080/08957959908200288 es_ES
dc.description.references Vaidya, S. N., Karunakaran, C., Achary, S. N., & Tyagi, A. K. (1999). New polymorphs of alumina: Part II μ and λ alumina. High Pressure Research, 16(4), 265-278. doi:10.1080/08957959908200299 es_ES
dc.description.references Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644 es_ES
dc.description.references Atou, T., Kusaba, K., Fukuoka, K., Kikuchi, M., & Syono, Y. (1990). Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. Journal of Solid State Chemistry, 89(2), 378-384. doi:10.1016/0022-4596(90)90280-b es_ES
dc.description.references Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., & Weimar, U. (2004). Ambient Pressure Synthesis of Corundum-Type In2O3. Journal of the American Chemical Society, 126(13), 4078-4079. doi:10.1021/ja0318075 es_ES
dc.description.references Yu, D., Wang, D., & Qian, Y. (2004). Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. Journal of Solid State Chemistry, 177(4-5), 1230-1234. doi:10.1016/j.jssc.2003.10.030 es_ES
dc.description.references Sorescu, M., Diamandescu, L., Tarabasanu-Mihaila, D., & Teodorescu, V. S. (2004). Nanocrystalline rhombohedral In2O3synthesized by hydrothermal and postannealing pathways. Journal of Materials Science, 39(2), 675-677. doi:10.1023/b:jmsc.0000011529.01603.fc es_ES
dc.description.references Åhman, J., Svensson, G., & Albertsson, J. (1996). A Reinvestigation of β-Gallium Oxide. Acta Crystallographica Section C Crystal Structure Communications, 52(6), 1336-1338. doi:10.1107/s0108270195016404 es_ES
dc.description.references Geller, S. (1960). Crystal Structure of β‐Ga2O3. The Journal of Chemical Physics, 33(3), 676-684. doi:10.1063/1.1731237 es_ES
dc.description.references Remeika, J. P., & Marezio, M. (1966). GROWTH OF α‐Ga2O3 SINGLE CRYSTALS AT 44 KBARS. Applied Physics Letters, 8(4), 87-88. doi:10.1063/1.1754500 es_ES
dc.description.references Tsuchiya, T., Yusa, H., & Tsuchiya, J. (2007). Post-Rh2O3(II)transition and the high pressure-temperature phase diagram of gallia: A first-principles and x-ray diffraction study. Physical Review B, 76(17). doi:10.1103/physrevb.76.174108 es_ES
dc.description.references Kishimura, H., & Matsumoto, H. (2018). Evaluation of the shock-induced phase transition in β-Ga2O3. Japanese Journal of Applied Physics, 57(12), 125503. doi:10.7567/jjap.57.125503 es_ES
dc.description.references Gurr, G. E., Montgomery, P. W., Knutson, C. D., & Gorres, B. T. (1970). The crystal structure of trigonal diboron trioxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 26(7), 906-915. doi:10.1107/s0567740870003369 es_ES
dc.description.references Switzer, J. A. (1986). The n‐Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722-728. doi:10.1149/1.2108662 es_ES
dc.description.references Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923 es_ES
dc.description.references Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047 es_ES
dc.description.references Bhattacharya, R. N., Yan, S. L., Xing, Z., Xie, Y., Wu, J. Z., Feldmann, M., … Blaugher, R. D. (2000). Superconducting Thallium Oxide and Mercury Oxide Films. MRS Proceedings, 659. doi:10.1557/proc-659-ii11.2 es_ES
dc.description.references Ma, C., & Rossman, G. R. (2009). Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94(5-6), 841-844. doi:10.2138/am.2009.3203 es_ES
dc.description.references Xue, K.-H., Blaise, P., Fonseca, L. R. C., & Nishi, Y. (2013). Prediction of Semimetallic TetragonalHf2O3andZr2O3from First Principles. Physical Review Letters, 110(6). doi:10.1103/physrevlett.110.065502 es_ES
dc.description.references Ovsyannikov, S. V., Trots, D. M., Kurnosov, A. V., Morgenroth, W., Liermann, H.-P., & Dubrovinsky, L. (2013). Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3. Journal of Physics: Condensed Matter, 25(38), 385401. doi:10.1088/0953-8984/25/38/385401 es_ES
dc.description.references Pasternak, M. P., Rozenberg, G. K., Machavariani, G. Y., Naaman, O., Taylor, R. D., & Jeanloz, R. (1999). Breakdown of the Mott-Hubbard State inFe2O3: A First-Order Insulator-Metal Transition with Collapse of Magnetism at 50 GPa. Physical Review Letters, 82(23), 4663-4666. doi:10.1103/physrevlett.82.4663 es_ES
dc.description.references Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428(6981), 409-412. doi:10.1038/nature02413 es_ES
dc.description.references Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, C., Chariton, S., Cerantola, V., … Sanchez-Valle, C. (2019). Magnetism in cold subducting slabs at mantle transition zone depths. Nature, 570(7759), 102-106. doi:10.1038/s41586-019-1254-8 es_ES
dc.description.references Shokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials, 426, 74-81. doi:10.1016/j.jmmm.2016.11.033 es_ES
dc.description.references Schrader, R., & B�ttner, G. (1963). Eine neue Eisen(III)-oxidphase: ?-Fe2O3. Zeitschrift f�r anorganische und allgemeine Chemie, 320(5-6), 220-234. doi:10.1002/zaac.19633200503 es_ES
dc.description.references Xu, H., Lee, S., & Xu, H. (2017). Luogufengite: A new nano-mineral of Fe2O3polymorph with giant coercive field. American Mineralogist, 102(4), 711-719. doi:10.2138/am-2017-5849 es_ES
dc.description.references Dejoie, C., Sciau, P., Li, W., Noé, L., Mehta, A., Chen, K., … Liu, Z. (2014). Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports, 4(1). doi:10.1038/srep04941 es_ES
dc.description.references Tronc, E., Chanéac, C., & Jolivet, J. P. (1998). Structural and Magnetic Characterization ofε-Fe2O3. Journal of Solid State Chemistry, 139(1), 93-104. doi:10.1006/jssc.1998.7817 es_ES
dc.description.references Tuček, J., Zbořil, R., Namai, A., & Ohkoshi, S. (2010). ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chemistry of Materials, 22(24), 6483-6505. doi:10.1021/cm101967h es_ES
dc.description.references Tuček, J., Machala, L., Ono, S., Namai, A., Yoshikiyo, M., Imoto, K., … Zbořil, R. (2015). Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 5(1). doi:10.1038/srep15091 es_ES
dc.description.references Rozenberg, G. K., Dubrovinsky, L. S., Pasternak, M. P., Naaman, O., Le Bihan, T., & Ahuja, R. (2002). High-pressure structural studies of hematiteFe2O3. Physical Review B, 65(6). doi:10.1103/physrevb.65.064112 es_ES
dc.description.references Badro, J., Fiquet, G., Struzhkin, V. V., Somayazulu, M., Mao, H., Shen, G., & Le Bihan, T. (2002). Nature of the High-Pressure Transition inFe2O3Hematite. Physical Review Letters, 89(20). doi:10.1103/physrevlett.89.205504 es_ES
dc.description.references Ito, E., Fukui, H., Katsura, T., Yamazaki, D., Yoshino, T., Aizawa, Y., … Funakoshi, K.-I. (2009). Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils. American Mineralogist, 94(2-3), 205-209. doi:10.2138/am.2009.2913 es_ES
dc.description.references Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., & Dubrovinsky, L. (2013). Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33(3), 534-545. doi:10.1080/08957959.2013.833613 es_ES
dc.description.references Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C., Ovsyannikov, S. V., … Prakapenka, V. (2016). Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Communications, 7(1). doi:10.1038/ncomms10661 es_ES
dc.description.references Shim, S.-H., Bengtson, A., Morgan, D., Sturhahn, W., Catalli, K., Zhao, J., … Prakapenka, V. (2009). Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proceedings of the National Academy of Sciences, 106(14), 5508-5512. doi:10.1073/pnas.0808549106 es_ES
dc.description.references Syono, Y., Ito, A., Morimoto, S., Suzuki, T., Yagi, T., & Akimoto, S. (1984). Mössbauer study on the high pressure phase of Fe2O3. Solid State Communications, 50(2), 97-100. doi:10.1016/0038-1098(84)90915-3 es_ES
dc.description.references Nasu, S., Kurimoto, K., Nagatomo, S., Endo, S., & Fujita, F. E. (1986). 57Fe Mössbauer study under high pressure; ε-Fe and Fe2O3. Hyperfine Interactions, 29(1-4), 1583-1586. doi:10.1007/bf02399539 es_ES
dc.description.references Jiang, J. Z., Olsen, J. S., Gerward, L., & Mørup, S. (1998). Enhanced bulk modulus and reduced transition pressure in γ-Fe 2 O 3 nanocrystals. Europhysics Letters (EPL), 44(5), 620-626. doi:10.1209/epl/i1998-00563-6 es_ES
dc.description.references Zhu, H., Ma, Y., Yang, H., Ji, C., Hou, D., & Guo, L. (2010). Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Journal of Physics and Chemistry of Solids, 71(8), 1183-1186. doi:10.1016/j.jpcs.2010.03.031 es_ES
dc.description.references Machala, L., Tuček, J., & Zbořil, R. (2011). Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials, 23(14), 3255-3272. doi:10.1021/cm200397g es_ES
dc.description.references Sans, J. A., Monteseguro, V., Garbarino, G., Gich, M., Cerantola, V., Cuartero, V., … Popescu, C. (2018). Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions. Nature Communications, 9(1). doi:10.1038/s41467-018-06966-9 es_ES
dc.description.references Grant, R. W., Geller, S., Cape, J. A., & Espinosa, G. P. (1968). Magnetic and Crystallographic Transitions in theα−Mn2O3−Fe2O3System. Physical Review, 175(2), 686-695. doi:10.1103/physrev.175.686 es_ES
dc.description.references Geller, S. (1971). Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 27(4), 821-828. doi:10.1107/s0567740871002966 es_ES
dc.description.references Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3 under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11). doi:10.1524/zkri.2005.220.11_2005.938 es_ES
dc.description.references Mukherjee, G. D., Vaidya, S. N., & Karunakaran, C. (2002). High Pressure and High Temperature Studies on Manganese Oxides. Phase Transitions, 75(6), 557-566. doi:10.1080/01411590290029818 es_ES
dc.description.references Khalyavin, D. D., Johnson, R. D., Manuel, P., Tsirlin, A. A., Abakumov, A. M., Kozlenko, D. P., … Ovsyannikov, S. V. (2018). Magneto-orbital texture in the perovskite modification of Mn2O3. Physical Review B, 98(1). doi:10.1103/physrevb.98.014426 es_ES
dc.description.references McWhan, D. B., Rice, T. M., & Remeika, J. P. (1969). Mott Transition in Cr-DopedV2O3. Physical Review Letters, 23(24), 1384-1387. doi:10.1103/physrevlett.23.1384 es_ES
dc.description.references Lupi, S., Baldassarre, L., Mansart, B., Perucchi, A., Barinov, A., Dudin, P., … Marsi, M. (2010). A microscopic view on the Mott transition in chromium-doped V2O3. Nature Communications, 1(1). doi:10.1038/ncomms1109 es_ES
dc.description.references Weber, D., Stork, A., Nakhal, S., Wessel, C., Reimann, C., Hermes, W., … Lerch, M. (2011). Bixbyite-Type V2O3—A Metastable Polymorph of Vanadium Sesquioxide. Inorganic Chemistry, 50(14), 6762-6766. doi:10.1021/ic200799n es_ES
dc.description.references McWhan, D. B., & Remeika, J. P. (1970). Metal-Insulator Transition in(V1−xCrx)2O3. Physical Review B, 2(9), 3734-3750. doi:10.1103/physrevb.2.3734 es_ES
dc.description.references Jayaraman, A., McWhan, D. B., Remeika, J. P., & Dernier, P. D. (1970). Critical Behavior of the Mott Transition in Cr-DopedV2O3. Physical Review B, 2(9), 3751-3756. doi:10.1103/physrevb.2.3751 es_ES
dc.description.references Limelette, P. (2003). Universality and Critical Behavior at the Mott Transition. Science, 302(5642), 89-92. doi:10.1126/science.1088386 es_ES
dc.description.references Rodolakis, F., Hansmann, P., Rueff, J.-P., Toschi, A., Haverkort, M. W., Sangiovanni, G., … Marsi, M. (2010). Inequivalent Routes across the Mott Transition inV2O3Explored by X-Ray Absorption. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.047401 es_ES
dc.description.references Alyabyeva, N., Sakai, J., Bavencoffe, M., Wolfman, J., Limelette, P., Funakubo, H., & Ruyter, A. (2018). Metal-insulator transition in V2O3 thin film caused by tip-induced strain. Applied Physics Letters, 113(24), 241603. doi:10.1063/1.5063712 es_ES
dc.description.references Finger, L. W., & Hazen, R. M. (1980). Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. Journal of Applied Physics, 51(10), 5362. doi:10.1063/1.327451 es_ES
dc.description.references Zhang, Q., Wu, X., & Qin, S. (2012). Pressure-Induced Phase Transition of V 2 O 3. Chinese Physics Letters, 29(10), 106101. doi:10.1088/0256-307x/29/10/106101 es_ES
dc.description.references Zhang, Q., Wu, X., & Qin, S. (2012). A nine-fold coordinated vanadium by oxygen in V2O3 from first-principles calculations. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30343-4 es_ES
dc.description.references Aggarwal, P. S., & Goswami, A. (1961). AN OXIDE OF TERVALENT NICKEL. The Journal of Physical Chemistry, 65(11), 2105-2105. doi:10.1021/j100828a503 es_ES
dc.description.references Conell, R. S., Corrigan, D. A., & Powell, B. R. (1992). The electrochromic properties of sputtered nickel oxide films. Solar Energy Materials and Solar Cells, 25(3-4), 301-313. doi:10.1016/0927-0248(92)90075-z es_ES
dc.description.references Jones, P. G., Rumpel, H., Schwarzmann, E., Sheldrick, G. M., & Paulus, H. (1979). Gold(III) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 35(6), 1435-1437. doi:10.1107/s0567740879006622 es_ES
dc.description.references Minomura, S., & Drickamer, H. G. (1963). Effect of Pressure on the Electrical Resistance of some Transition‐Metal Oxides and Sulfides. Journal of Applied Physics, 34(10), 3043-3048. doi:10.1063/1.1729117 es_ES
dc.description.references Chenavas, J., Joubert, J. C., & Marezio, M. (1971). Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Communications, 9(13), 1057-1060. doi:10.1016/0038-1098(71)90462-5 es_ES
dc.description.references Rekhi, S., Dubrovinsky, L. S., Ahuja, R., Saxena, S. K., & Johansson, B. (2000). Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. Journal of Alloys and Compounds, 302(1-2), 16-20. doi:10.1016/s0925-8388(00)00613-7 es_ES
dc.description.references Kota, Y., Yoshimori, Y., Imamura, H., & Kimura, T. (2017). Enhancement of magnetoelectric operating temperature in compressed Cr2O3 under hydrostatic pressure. Applied Physics Letters, 110(4), 042902. doi:10.1063/1.4975000 es_ES
dc.description.references Shim, S.-H., Duffy, T. S., Jeanloz, R., Yoo, C.-S., & Iota, V. (2004). Raman spectroscopy and x-ray diffraction of phase transitions inCr2O3to 61 GPa. Physical Review B, 69(14). doi:10.1103/physrevb.69.144107 es_ES
dc.description.references Dobin, A. Y., Duan, W., & Wentzcovitch, R. M. (2000). Magnetostructural effects and phase transition inCr2O3under pressure. Physical Review B, 62(18), 11997-12000. doi:10.1103/physrevb.62.11997 es_ES
dc.description.references Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747 es_ES
dc.description.references Umemoto, K., & Wentzcovitch, R. M. (2008). Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. Proceedings of the National Academy of Sciences, 105(18), 6526-6530. doi:10.1073/pnas.0711925105 es_ES
dc.description.references Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402 es_ES
dc.description.references Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1 es_ES
dc.description.references Shannon, R. D., & Prewitt, C. T. (1970). Synthesis and structure of a new high-pressure form of Rh2O3. Journal of Solid State Chemistry, 2(1), 134-136. doi:10.1016/0022-4596(70)90041-1 es_ES
dc.description.references Zhuo, S., & Sohlberg, K. (2006). Origin of stability of the high-temperature, low-pressure Rh2O3 III form of rhodium sesquioxide. Journal of Solid State Chemistry, 179(7), 2126-2132. doi:10.1016/j.jssc.2006.04.015 es_ES
dc.description.references Becker, N., Reimann, C., Weber, D., Lüdtke, T., Lerch, M., Bredow, T., & Dronskowski, R. (2017). A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs. Zeitschrift für Kristallographie - Crystalline Materials, 232(1-3). doi:10.1515/zkri-2016-1960 es_ES
dc.description.references Zhang, J., Oganov, A. R., Li, X., Xue, K.-H., Wang, Z., & Dong, H. (2015). Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Physical Review B, 92(18). doi:10.1103/physrevb.92.184104 es_ES
dc.description.references Ai, Z., Huang, Y., Lee, S., & Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044-2049. doi:10.1016/j.jallcom.2010.10.132 es_ES
dc.description.references Zheng, F.-L., Li, G.-R., Ou, Y.-N., Wang, Z.-L., Su, C.-Y., & Tong, Y.-X. (2010). Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chemical Communications, 46(27), 5021. doi:10.1039/c002126a es_ES
dc.description.references Hu, M., Jiang, Y., Sun, W., Wang, H., Jin, C., & Yan, M. (2014). Reversible Conversion-Alloying of Sb2O3as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 6(21), 19449-19455. doi:10.1021/am505505m es_ES
dc.description.references Datta, A., Giri, A. K., & Chakravorty, D. (1993). ac conductivity ofSb2O3-P2O5glasses. Physical Review B, 47(24), 16242-16246. doi:10.1103/physrevb.47.16242 es_ES
dc.description.references Shen, Z.-X., Chen, G.-Q., Ni, J.-H., Li, X.-S., Xiong, S.-M., Qiu, Q.-Y., … Wang, Z.-Y. (1997). Use of Arsenic Trioxide (As2O3 ) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 89(9), 3354-3360. doi:10.1182/blood.v89.9.3354 es_ES
dc.description.references Shen, Z.-X., Shi, Z.-Z., Fang, J., Gu, B.-W., Li, J.-M., Zhu, Y.-M., … Chen, Z. (2004). All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences, 101(15), 5328-5335. doi:10.1073/pnas.0400053101 es_ES
dc.description.references Matsumoto, A., Koyama, Y., Togo, A., Choi, M., & Tanaka, I. (2011). Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3crystal polymorphs. Physical Review B, 83(21). doi:10.1103/physrevb.83.214110 es_ES
dc.description.references Matsumoto, A., Koyama, Y., & Tanaka, I. (2010). Structures and energetics ofBi2O3polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. Physical Review B, 81(9). doi:10.1103/physrevb.81.094117 es_ES
dc.description.references Zhao, Z., Zeng, Q., Zhang, H., Wang, S., Hirai, S., Zeng, Z., & Mao, W. L. (2015). Structural transition and amorphization in compressedα−Sb2O3. Physical Review B, 91(18). doi:10.1103/physrevb.91.184112 es_ES
dc.description.references Sans, J. A., Manjón, F. J., Popescu, C., Cuenca-Gotor, V. P., Gomis, O., Muñoz, A., … Segura, A. (2016). Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He. Physical Review B, 93(5). doi:10.1103/physrevb.93.054102 es_ES
dc.description.references Cuenca-Gotor, V. P., Gomis, O., Sans, J. A., Manjón, F. J., Rodríguez-Hernández, P., & Muñoz, A. (2016). Vibrational and elastic properties of As4O6 and As4O6·2He at high pressures: Study of dynamical and mechanical stability. Journal of Applied Physics, 120(15), 155901. doi:10.1063/1.4964875 es_ES
dc.description.references Guńka, P. A., Dziubek, K. F., Gładysiak, A., Dranka, M., Piechota, J., Hanfland, M., … Zachara, J. (2015). Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He. Crystal Growth & Design, 15(8), 3740-3745. doi:10.1021/acs.cgd.5b00390 es_ES
dc.description.references Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108 es_ES
dc.description.references Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j es_ES
dc.description.references Orosel, D., Dinnebier, R. E., Blatov, V. A., & Jansen, M. (2012). Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Crystallographica Section B Structural Science, 68(1), 1-7. doi:10.1107/s0108768111046751 es_ES
dc.description.references Cornei, N., Tancret, N., Abraham, F., & Mentré, O. (2006). New ε-Bi2O3Metastable Polymorph. Inorganic Chemistry, 45(13), 4886-4888. doi:10.1021/ic0605221 es_ES
dc.description.references Zou, Y., Zhang, W., Li, X., Ma, M., Li, X., Wang, C.-H., … Li, B. (2018). Pressure-induced anomalies and structural instability in compressed β-Sb2O3. Physical Chemistry Chemical Physics, 20(16), 11430-11436. doi:10.1039/c8cp00084k es_ES
dc.description.references Geng, A.-H., Cao, L.-H., Ma, Y.-M., Cui, Q.-L., & Wan, C.-M. (2016). Experimental Observation of Phase Transition in Sb 2 O 3 under High Pressure. Chinese Physics Letters, 33(9), 097401. doi:10.1088/0256-307x/33/9/097401 es_ES
dc.description.references Harwig, H. A. (1978). On the Structure of Bismuthsesquioxide: The ?, ?, ?, and ?-phase. Zeitschrift f�r anorganische und allgemeine Chemie, 444(1), 151-166. doi:10.1002/zaac.19784440118 es_ES
dc.description.references Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402 es_ES
dc.description.references Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Eremets, M. I., Trojan, I. A., & Artemov, V. V. (2006). Equation of state and high-pressure irreversible amorphization in Y3Fe5O12. JETP Letters, 83(1), 37-41. doi:10.1134/s0021364006010097 es_ES
dc.description.references Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D. L. V. K., Wedig, U., Jansen, M., & Senyshyn, A. (2010). High-pressure and high-temperature multianvil synthesis of metastable polymorphs ofBi2O3: Crystal structure and electronic properties. Physical Review B, 82(2). doi:10.1103/physrevb.82.024106 es_ES
dc.description.references Pertlik, F. (1975). Die Kristallstruktur der monoklinen Form von As2O3 (Claudetit II). Monatshefte f�r Chemie, 106(3), 755-762. doi:10.1007/bf00902181 es_ES
dc.description.references Soignard, E., Amin, S. A., Mei, Q., Benmore, C. J., & Yarger, J. L. (2008). High-pressure behavior ofAs2O3: Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 77(14). doi:10.1103/physrevb.77.144113 es_ES
dc.description.references Guńka, P. A., Dranka, M., Piechota, J., Żukowska, G. Z., Zalewska, A., & Zachara, J. (2012). As2O3 Polymorphs: Theoretical Insight into Their Stability and Ammonia Templated Claudetite II Crystallization. Crystal Growth & Design, 12(11), 5663-5670. doi:10.1021/cg3011579 es_ES
dc.description.references Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567 es_ES
dc.description.references Jansen, M., & Moebs, M. (1984). Structural investigations on solid tetraphosphorus hexaoxide. Inorganic Chemistry, 23(26), 4486-4488. doi:10.1021/ic00194a017 es_ES
dc.description.references Clark, G. L., Schieltz, N. C., & Quirke, T. T. (1937). A New Study of the Preparation and Properties of the Higher Oxides of Lead. Journal of the American Chemical Society, 59(11), 2305-2308. doi:10.1021/ja01290a063 es_ES
dc.description.references Bouvaist, J., & Weigel, D. (1970). Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Crystallographica Section A, 26(5), 501-510. doi:10.1107/s0567739470001316 es_ES
dc.description.references Seko, A., Togo, A., Oba, F., & Tanaka, I. (2008). Structure and Stability of a Homologous Series of Tin Oxides. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.045702 es_ES
dc.description.references Zhao, J.-H., Tan, R.-Q., Yang, Y., Xu, W., Li, J., Shen, W.-F., … Song, W.-J. (2015). Synthesis mechanism of heterovalent Sn 2 O 3 nanosheets in oxidation annealing process. Chinese Physics B, 24(7), 070505. doi:10.1088/1674-1056/24/7/070505 es_ES
dc.description.references Kuang, X., Liu, T., Zeng, W., Peng, X., & Wang, Z. (2016). Hydrothermal synthesis and characterization of novel Sn 2 O 3 hierarchical nanostructures. Materials Letters, 165, 235-238. doi:10.1016/j.matlet.2015.10.142 es_ES
dc.description.references Imre, A. R. (2007). On the existence of negative pressure states. physica status solidi (b), 244(3), 893-899. doi:10.1002/pssb.200572708 es_ES
dc.description.references McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716 es_ES
dc.description.references Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Negative pressures in CaWO4 nanocrystals. Journal of Applied Physics, 105(9), 094321. doi:10.1063/1.3116727 es_ES
dc.description.references Matsui, T., Yagasaki, T., Matsumoto, M., & Tanaka, H. (2019). Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability. The Journal of Chemical Physics, 150(4), 041102. doi:10.1063/1.5083021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem