Mostrar el registro sencillo del ítem
dc.contributor.author | Manjón, Francisco-Javier | es_ES |
dc.contributor.author | Sans-Tresserras, Juan Ángel | es_ES |
dc.contributor.author | Ibáñez, Jordi | es_ES |
dc.contributor.author | Pereira, André Luis de Jesús | es_ES |
dc.date.accessioned | 2020-11-21T04:31:19Z | |
dc.date.available | 2020-11-21T04:31:19Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155434 | |
dc.description.abstract | [EN] Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which pressure can be changed (over six orders of magnitude with respect to room pressure) may induce structural changes at a much larger extent than those found by changing temperature or chemical composition. In this article, we review the pressure-induced phase transitions of most sesquioxides, i.e., A(2)O(3) compounds. Sesquioxides constitute a big subfamily of ABO(3) compounds, due to their large diversity of chemical compositions. They are very important for Earth and Materials Sciences, thanks to their presence in our planet's crust and mantle, and their wide variety of technological applications. Recent discoveries, hot spots, controversial questions, and future directions of research are highlighted. | es_ES |
dc.description.sponsorship | This research was funded by Spanish Ministerio de Ciencia, Innovacion y Universidades under grants MAT2016-75586-C4-1/2/3-P, FIS2017-83295-P, PGC2018-094417-B-100, and RED2018-102612-T (MALTA-Consolider-Team network) and by Generalitat Valenciana under grant PROMETEO/2018/123 (EFIMAT). J. A. S. also acknowledges Ramon y Cajal Fellowship for financial support (RYC-2015-17482). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Crystals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sesquioxides | es_ES |
dc.subject | High pressure | es_ES |
dc.subject | Phase transitions | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Pressure-Induced Phase Transitions in Sesquioxides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/cryst9120630 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094417-B-I00/ES/APROXIMACIONES RACIONALES PARA EL DISEÑO DE NUEVOS MATERIALES MEDIANTE LA COMBINACION DE TEORIA Y EXPERIMENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Manjón, F.; Sans-Tresserras, JÁ.; Ibáñez, J.; Pereira, ALDJ. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals. 9(12):1-32. https://doi.org/10.3390/cryst9120630 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/cryst9120630 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 32 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2073-4352 | es_ES |
dc.relation.pasarela | S\403143 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Adachi, G., & Imanaka, N. (1998). The Binary Rare Earth Oxides. Chemical Reviews, 98(4), 1479-1514. doi:10.1021/cr940055h | es_ES |
dc.description.references | ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002 | es_ES |
dc.description.references | Manjón, F. J., & Errandonea, D. (2008). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238 | es_ES |
dc.description.references | Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163 | es_ES |
dc.description.references | Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043 | es_ES |
dc.description.references | Vegas, A., & Isea, R. (1998). Distribution of the M-M Distances in the Rare Earth Oxides. Acta Crystallographica Section B Structural Science, 54(6), 732-740. doi:10.1107/s0108768198003759 | es_ES |
dc.description.references | Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301 | es_ES |
dc.description.references | Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187 | es_ES |
dc.description.references | Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421 | es_ES |
dc.description.references | Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015 | es_ES |
dc.description.references | Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223 | es_ES |
dc.description.references | Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663 | es_ES |
dc.description.references | Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219 | es_ES |
dc.description.references | Lonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022 | es_ES |
dc.description.references | Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027 | es_ES |
dc.description.references | Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832 | es_ES |
dc.description.references | Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341 | es_ES |
dc.description.references | Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720 | es_ES |
dc.description.references | Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027 | es_ES |
dc.description.references | Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229 | es_ES |
dc.description.references | Chen, C.-S., Cheung, K., & Yuan, T.-C. (2007). Novel collider signatures for Little Higgs dark matter models. Physics Letters B, 644(2-3), 158-164. doi:10.1016/j.physletb.2006.11.050 | es_ES |
dc.description.references | Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114 | es_ES |
dc.description.references | Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703 | es_ES |
dc.description.references | Dilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913 | es_ES |
dc.description.references | Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019 | es_ES |
dc.description.references | Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504 | es_ES |
dc.description.references | Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889v | es_ES |
dc.description.references | Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391 | es_ES |
dc.description.references | Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.351 | es_ES |
dc.description.references | Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705 | es_ES |
dc.description.references | Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082 | es_ES |
dc.description.references | Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701 | es_ES |
dc.description.references | Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y<SUB>2</SUB>O<SUB>3</SUB>:Eu<SUP>3+</SUP> Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752 | es_ES |
dc.description.references | DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-x | es_ES |
dc.description.references | Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042z | es_ES |
dc.description.references | Bose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036 | es_ES |
dc.description.references | Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028 | es_ES |
dc.description.references | Zhang, Q., Wu, X., & Qin, S. (2017). Pressure-induced phase transition of B-type Y 2 O 3. Chinese Physics B, 26(9), 090703. doi:10.1088/1674-1056/26/9/090703 | es_ES |
dc.description.references | Chen, G., Peterson, J. R., & Brister, K. E. (1994). An Energy-Dispersive X-Ray Diffraction Study of Monoclinic Eu2O3 under Pressure. Journal of Solid State Chemistry, 111(2), 437-439. doi:10.1006/jssc.1994.1250 | es_ES |
dc.description.references | Atou, T., Kusaba, K., Tsuchida, Y., Utsumi, W., Yagi, T., & Syono, Y. (1989). Reversible B-type - A-type transition of Sm2O3 under high pressure. Materials Research Bulletin, 24(9), 1171-1176. doi:10.1016/0025-5408(89)90076-7 | es_ES |
dc.description.references | Hongo, T., Kondo, K., Nakamura, K. G., & Atou, T. (2007). High pressure Raman spectroscopic study of structural phase transition in samarium oxide. Journal of Materials Science, 42(8), 2582-2585. doi:10.1007/s10853-006-1417-5 | es_ES |
dc.description.references | Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154g | es_ES |
dc.description.references | Pandey, K. K., Garg, N., Mishra, A. K., & Sharma, S. M. (2012). High pressure phase transition in Nd2O3. Journal of Physics: Conference Series, 377, 012006. doi:10.1088/1742-6596/377/1/012006 | es_ES |
dc.description.references | Jiang, S., Liu, J., Bai, L., Li, X., Li, Y., He, S., … Liang, D. (2018). Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Advances, 8(2), 025019. doi:10.1063/1.5018020 | es_ES |
dc.description.references | Lipp, M. J., Jeffries, J. R., Cynn, H., Park Klepeis, J.-H., Evans, W. J., Mortensen, D. R., … Chow, P. (2016). Comparison of the high-pressure behavior of the cerium oxidesCe2O3andCeO2. Physical Review B, 93(6). doi:10.1103/physrevb.93.064106 | es_ES |
dc.description.references | Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5 | es_ES |
dc.description.references | Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103 | es_ES |
dc.description.references | Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118 | es_ES |
dc.description.references | WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1 | es_ES |
dc.description.references | Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267 | es_ES |
dc.description.references | Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068 | es_ES |
dc.description.references | Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022 | es_ES |
dc.description.references | Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105 | es_ES |
dc.description.references | Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206 | es_ES |
dc.description.references | Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236 | es_ES |
dc.description.references | Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497a | es_ES |
dc.description.references | Pathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668 | es_ES |
dc.description.references | Catlow, C. R. A., Guo, Z. X., Miskufova, M., Shevlin, S. A., Smith, A. G. H., Sokol, A. A., … Woodley, S. M. (2010). Advances in computational studies of energy materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3379-3456. doi:10.1098/rsta.2010.0111 | es_ES |
dc.description.references | Caracas, R. (2005). Prediction of a new phase transition in Al2O3at high pressures. Geophysical Research Letters, 32(6). doi:10.1029/2004gl022204 | es_ES |
dc.description.references | Funamori, N. (1997). High-Pressure Transformation of Al2O3. Science, 278(5340), 1109-1111. doi:10.1126/science.278.5340.1109 | es_ES |
dc.description.references | Jephcoat, A. P., Hemley, R. J., & Mao, H. K. (1988). X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Physica B+C, 150(1-2), 115-121. doi:10.1016/0378-4363(88)90112-x | es_ES |
dc.description.references | Dewaele, A., & Torrent, M. (2013). Equation of state ofα-Al2O3. Physical Review B, 88(6). doi:10.1103/physrevb.88.064107 | es_ES |
dc.description.references | Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278-4284. doi:10.1021/jp983791o | es_ES |
dc.description.references | Hart, H. V., & Drickamer, H. G. (1965). Effect of High Pressure on the Lattice Parameters of Al2O3. The Journal of Chemical Physics, 43(7), 2265-2266. doi:10.1063/1.1697121 | es_ES |
dc.description.references | Mashimo, T., Tsumoto, K., Nakamura, K., Noguchi, Y., Fukuoka, K., & Syono, Y. (2000). High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophysical Research Letters, 27(14), 2021-2024. doi:10.1029/2000gl008490 | es_ES |
dc.description.references | ONO, S., OGANOV, A., KOYAMA, T., & SHIMIZU, H. (2006). Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246(3-4), 326-335. doi:10.1016/j.epsl.2006.04.017 | es_ES |
dc.description.references | Zhao, J., Hearne, G. R., Maaza, M., Laher-Lacour, F., Witcomb, M. J., Le Bihan, T., & Mezouar, M. (2001). Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. Journal of Applied Physics, 90(7), 3280-3285. doi:10.1063/1.1394915 | es_ES |
dc.description.references | Thomson, K. T., Wentzcovitch, R. M., & Bukowinski, M. S. T. (1996). Polymorphs of Alumina Predicted by First Principles: Putting Pressure on the Ruby Pressure Scale. Science, 274(5294), 1880-1882. doi:10.1126/science.274.5294.1880 | es_ES |
dc.description.references | Jahn, S., Madden, P., & Wilson, M. (2004). Dynamic simulation of pressure-driven phase transformations in crystalline Al2O3. Physical Review B, 69(2). doi:10.1103/physrevb.69.020106 | es_ES |
dc.description.references | Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2005). Transition from theRh2O3(II)-to-CaIrO3structure and the high-pressure-temperature phase diagram of alumina. Physical Review B, 72(2). doi:10.1103/physrevb.72.020103 | es_ES |
dc.description.references | García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599 | es_ES |
dc.description.references | Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107 | es_ES |
dc.description.references | Sans, J. A., Vilaplana, R., Errandonea, D., Cuenca-Gotor, V. P., García-Domene, B., Popescu, C., … Muñoz, A. (2017). Structural and vibrational properties of corundum-type In2O3nanocrystals under compression. Nanotechnology, 28(20), 205701. doi:10.1088/1361-6528/aa6a3f | es_ES |
dc.description.references | Lipinska-Kalita, K. E., Chen, B., Kruger, M. B., Ohki, Y., Murowchick, J., & Gogol, E. P. (2003). High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic mediumK2O−SiO2−Ga2O3. Physical Review B, 68(3). doi:10.1103/physrevb.68.035209 | es_ES |
dc.description.references | Luan, S., Dong, L., & Jia, R. (2019). Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. Journal of Crystal Growth, 505, 74-81. doi:10.1016/j.jcrysgro.2018.09.031 | es_ES |
dc.description.references | Machon, D., McMillan, P. F., Xu, B., & Dong, J. (2006). High-pressure study of theβ-to-αtransition inGa2O3. Physical Review B, 73(9). doi:10.1103/physrevb.73.094125 | es_ES |
dc.description.references | Wang, H., He, Y., Chen, W., Zeng, Y. W., Stahl, K., Kikegawa, T., & Jiang, J. Z. (2010). High-pressure behavior of β-Ga2O3 nanocrystals. Journal of Applied Physics, 107(3), 033520. doi:10.1063/1.3296121 | es_ES |
dc.description.references | Claussen, W. F., & Mackenzie, J. D. (1959). CRYSTALLIZATION OF B2O3AT HIGH PRESSURES1. Journal of the American Chemical Society, 81(4), 1007-1007. doi:10.1021/ja01513a063 | es_ES |
dc.description.references | Brazhkin, V. V., Katayama, Y., Inamura, Y., Kondrin, M. V., Lyapin, A. G., Popova, S. V., & Voloshin, R. N. (2003). Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. Journal of Experimental and Theoretical Physics Letters, 78(6), 393-397. doi:10.1134/1.1630134 | es_ES |
dc.description.references | Nicholas, J., Sinogeikin, S., Kieffer, J., & Bass, J. (2004). Spectroscopic Evidence of Polymorphism in VitreousB2O3. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.215701 | es_ES |
dc.description.references | Lee, S. K., Mibe, K., Fei, Y., Cody, G. D., & Mysen, B. O. (2005). Structure ofB2O3Glass at High Pressure: AB11Solid-State NMR Study. Physical Review Letters, 94(16). doi:10.1103/physrevlett.94.165507 | es_ES |
dc.description.references | Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241 | es_ES |
dc.description.references | Weir, S. T., Mitchell, A. C., & Nellis, W. J. (1996). Electrical resistivity of single‐crystal Al2O3shock‐compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). Journal of Applied Physics, 80(3), 1522-1525. doi:10.1063/1.362946 | es_ES |
dc.description.references | Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 | es_ES |
dc.description.references | Song, H. I., Kim, E. S., & Yoon, K. H. (1988). Phase transformation and characteristics of beta-alumina. Physica B+C, 150(1-2), 148-159. doi:10.1016/0378-4363(88)90117-9 | es_ES |
dc.description.references | ENGÜRLÜ, S., TAŞLIÇUKUR ÖZTÜRK, Z., & KUŞKONMAZ, N. (2017). Investigation of the Production of β-Al2O3 Solid Electrolyte from Seydişehir α-Al2O3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 816. doi:10.19113/sdufbed.31721 | es_ES |
dc.description.references | Duan, W., Wentzcovitch, R. M., & Thomson, K. T. (1998). First-principles study of high-pressure alumina polymorphs. Physical Review B, 57(17), 10363-10369. doi:10.1103/physrevb.57.10363 | es_ES |
dc.description.references | Oganov, A. R., & Ono, S. (2005). The high-pressure phase of alumina and implications for Earth’s D’’ layer. Proceedings of the National Academy of Sciences, 102(31), 10828-10831. doi:10.1073/pnas.0501800102 | es_ES |
dc.description.references | Hama, J., & Suito, K. (2002). The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temperatures-High Pressures, 34(3), 323-334. doi:10.1068/htjr033 | es_ES |
dc.description.references | Ono, S., Kikegawa, T., & Ohishi, Y. (2004). High-pressure phase transition of hematite, Fe2O3. Journal of Physics and Chemistry of Solids, 65(8-9), 1527-1530. doi:10.1016/j.jpcs.2003.11.042 | es_ES |
dc.description.references | Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445-448. doi:10.1038/nature02701 | es_ES |
dc.description.references | Vaidya, S. N. (1999). High-pressure high-temperature transitions in nanocrystallineγ Al2O3,γ Fe2O3 and TiO2. Bulletin of Materials Science, 22(3), 287-293. doi:10.1007/bf02749933 | es_ES |
dc.description.references | Mishra, R. S., Lesher, C. E., & Mukherjee, A. K. (1996). High-Pressure Sintering of Nanocrystalline gammaAl2O3. Journal of the American Ceramic Society, 79(11), 2989-2992. doi:10.1111/j.1151-2916.1996.tb08741.x | es_ES |
dc.description.references | Vaidya, S. N., Karunakaran, C., Kamath, R. V., Pillai, K. T., & Vaidya, V. N. (1999). New polymorphs of alumina. High Pressure Research, 16(3), 147-160. doi:10.1080/08957959908200288 | es_ES |
dc.description.references | Vaidya, S. N., Karunakaran, C., Achary, S. N., & Tyagi, A. K. (1999). New polymorphs of alumina: Part II μ and λ alumina. High Pressure Research, 16(4), 265-278. doi:10.1080/08957959908200299 | es_ES |
dc.description.references | Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644 | es_ES |
dc.description.references | Atou, T., Kusaba, K., Fukuoka, K., Kikuchi, M., & Syono, Y. (1990). Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. Journal of Solid State Chemistry, 89(2), 378-384. doi:10.1016/0022-4596(90)90280-b | es_ES |
dc.description.references | Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., & Weimar, U. (2004). Ambient Pressure Synthesis of Corundum-Type In2O3. Journal of the American Chemical Society, 126(13), 4078-4079. doi:10.1021/ja0318075 | es_ES |
dc.description.references | Yu, D., Wang, D., & Qian, Y. (2004). Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. Journal of Solid State Chemistry, 177(4-5), 1230-1234. doi:10.1016/j.jssc.2003.10.030 | es_ES |
dc.description.references | Sorescu, M., Diamandescu, L., Tarabasanu-Mihaila, D., & Teodorescu, V. S. (2004). Nanocrystalline rhombohedral In2O3synthesized by hydrothermal and postannealing pathways. Journal of Materials Science, 39(2), 675-677. doi:10.1023/b:jmsc.0000011529.01603.fc | es_ES |
dc.description.references | Åhman, J., Svensson, G., & Albertsson, J. (1996). A Reinvestigation of β-Gallium Oxide. Acta Crystallographica Section C Crystal Structure Communications, 52(6), 1336-1338. doi:10.1107/s0108270195016404 | es_ES |
dc.description.references | Geller, S. (1960). Crystal Structure of β‐Ga2O3. The Journal of Chemical Physics, 33(3), 676-684. doi:10.1063/1.1731237 | es_ES |
dc.description.references | Remeika, J. P., & Marezio, M. (1966). GROWTH OF α‐Ga2O3 SINGLE CRYSTALS AT 44 KBARS. Applied Physics Letters, 8(4), 87-88. doi:10.1063/1.1754500 | es_ES |
dc.description.references | Tsuchiya, T., Yusa, H., & Tsuchiya, J. (2007). Post-Rh2O3(II)transition and the high pressure-temperature phase diagram of gallia: A first-principles and x-ray diffraction study. Physical Review B, 76(17). doi:10.1103/physrevb.76.174108 | es_ES |
dc.description.references | Kishimura, H., & Matsumoto, H. (2018). Evaluation of the shock-induced phase transition in β-Ga2O3. Japanese Journal of Applied Physics, 57(12), 125503. doi:10.7567/jjap.57.125503 | es_ES |
dc.description.references | Gurr, G. E., Montgomery, P. W., Knutson, C. D., & Gorres, B. T. (1970). The crystal structure of trigonal diboron trioxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 26(7), 906-915. doi:10.1107/s0567740870003369 | es_ES |
dc.description.references | Switzer, J. A. (1986). The n‐Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722-728. doi:10.1149/1.2108662 | es_ES |
dc.description.references | Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923 | es_ES |
dc.description.references | Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047 | es_ES |
dc.description.references | Bhattacharya, R. N., Yan, S. L., Xing, Z., Xie, Y., Wu, J. Z., Feldmann, M., … Blaugher, R. D. (2000). Superconducting Thallium Oxide and Mercury Oxide Films. MRS Proceedings, 659. doi:10.1557/proc-659-ii11.2 | es_ES |
dc.description.references | Ma, C., & Rossman, G. R. (2009). Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94(5-6), 841-844. doi:10.2138/am.2009.3203 | es_ES |
dc.description.references | Xue, K.-H., Blaise, P., Fonseca, L. R. C., & Nishi, Y. (2013). Prediction of Semimetallic TetragonalHf2O3andZr2O3from First Principles. Physical Review Letters, 110(6). doi:10.1103/physrevlett.110.065502 | es_ES |
dc.description.references | Ovsyannikov, S. V., Trots, D. M., Kurnosov, A. V., Morgenroth, W., Liermann, H.-P., & Dubrovinsky, L. (2013). Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3. Journal of Physics: Condensed Matter, 25(38), 385401. doi:10.1088/0953-8984/25/38/385401 | es_ES |
dc.description.references | Pasternak, M. P., Rozenberg, G. K., Machavariani, G. Y., Naaman, O., Taylor, R. D., & Jeanloz, R. (1999). Breakdown of the Mott-Hubbard State inFe2O3: A First-Order Insulator-Metal Transition with Collapse of Magnetism at 50 GPa. Physical Review Letters, 82(23), 4663-4666. doi:10.1103/physrevlett.82.4663 | es_ES |
dc.description.references | Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428(6981), 409-412. doi:10.1038/nature02413 | es_ES |
dc.description.references | Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, C., Chariton, S., Cerantola, V., … Sanchez-Valle, C. (2019). Magnetism in cold subducting slabs at mantle transition zone depths. Nature, 570(7759), 102-106. doi:10.1038/s41586-019-1254-8 | es_ES |
dc.description.references | Shokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials, 426, 74-81. doi:10.1016/j.jmmm.2016.11.033 | es_ES |
dc.description.references | Schrader, R., & B�ttner, G. (1963). Eine neue Eisen(III)-oxidphase: ?-Fe2O3. Zeitschrift f�r anorganische und allgemeine Chemie, 320(5-6), 220-234. doi:10.1002/zaac.19633200503 | es_ES |
dc.description.references | Xu, H., Lee, S., & Xu, H. (2017). Luogufengite: A new nano-mineral of Fe2O3polymorph with giant coercive field. American Mineralogist, 102(4), 711-719. doi:10.2138/am-2017-5849 | es_ES |
dc.description.references | Dejoie, C., Sciau, P., Li, W., Noé, L., Mehta, A., Chen, K., … Liu, Z. (2014). Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports, 4(1). doi:10.1038/srep04941 | es_ES |
dc.description.references | Tronc, E., Chanéac, C., & Jolivet, J. P. (1998). Structural and Magnetic Characterization ofε-Fe2O3. Journal of Solid State Chemistry, 139(1), 93-104. doi:10.1006/jssc.1998.7817 | es_ES |
dc.description.references | Tuček, J., Zbořil, R., Namai, A., & Ohkoshi, S. (2010). ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chemistry of Materials, 22(24), 6483-6505. doi:10.1021/cm101967h | es_ES |
dc.description.references | Tuček, J., Machala, L., Ono, S., Namai, A., Yoshikiyo, M., Imoto, K., … Zbořil, R. (2015). Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 5(1). doi:10.1038/srep15091 | es_ES |
dc.description.references | Rozenberg, G. K., Dubrovinsky, L. S., Pasternak, M. P., Naaman, O., Le Bihan, T., & Ahuja, R. (2002). High-pressure structural studies of hematiteFe2O3. Physical Review B, 65(6). doi:10.1103/physrevb.65.064112 | es_ES |
dc.description.references | Badro, J., Fiquet, G., Struzhkin, V. V., Somayazulu, M., Mao, H., Shen, G., & Le Bihan, T. (2002). Nature of the High-Pressure Transition inFe2O3Hematite. Physical Review Letters, 89(20). doi:10.1103/physrevlett.89.205504 | es_ES |
dc.description.references | Ito, E., Fukui, H., Katsura, T., Yamazaki, D., Yoshino, T., Aizawa, Y., … Funakoshi, K.-I. (2009). Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils. American Mineralogist, 94(2-3), 205-209. doi:10.2138/am.2009.2913 | es_ES |
dc.description.references | Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., & Dubrovinsky, L. (2013). Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33(3), 534-545. doi:10.1080/08957959.2013.833613 | es_ES |
dc.description.references | Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C., Ovsyannikov, S. V., … Prakapenka, V. (2016). Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Communications, 7(1). doi:10.1038/ncomms10661 | es_ES |
dc.description.references | Shim, S.-H., Bengtson, A., Morgan, D., Sturhahn, W., Catalli, K., Zhao, J., … Prakapenka, V. (2009). Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proceedings of the National Academy of Sciences, 106(14), 5508-5512. doi:10.1073/pnas.0808549106 | es_ES |
dc.description.references | Syono, Y., Ito, A., Morimoto, S., Suzuki, T., Yagi, T., & Akimoto, S. (1984). Mössbauer study on the high pressure phase of Fe2O3. Solid State Communications, 50(2), 97-100. doi:10.1016/0038-1098(84)90915-3 | es_ES |
dc.description.references | Nasu, S., Kurimoto, K., Nagatomo, S., Endo, S., & Fujita, F. E. (1986). 57Fe Mössbauer study under high pressure; ε-Fe and Fe2O3. Hyperfine Interactions, 29(1-4), 1583-1586. doi:10.1007/bf02399539 | es_ES |
dc.description.references | Jiang, J. Z., Olsen, J. S., Gerward, L., & Mørup, S. (1998). Enhanced bulk modulus and reduced transition pressure in γ-Fe 2 O 3 nanocrystals. Europhysics Letters (EPL), 44(5), 620-626. doi:10.1209/epl/i1998-00563-6 | es_ES |
dc.description.references | Zhu, H., Ma, Y., Yang, H., Ji, C., Hou, D., & Guo, L. (2010). Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Journal of Physics and Chemistry of Solids, 71(8), 1183-1186. doi:10.1016/j.jpcs.2010.03.031 | es_ES |
dc.description.references | Machala, L., Tuček, J., & Zbořil, R. (2011). Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials, 23(14), 3255-3272. doi:10.1021/cm200397g | es_ES |
dc.description.references | Sans, J. A., Monteseguro, V., Garbarino, G., Gich, M., Cerantola, V., Cuartero, V., … Popescu, C. (2018). Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions. Nature Communications, 9(1). doi:10.1038/s41467-018-06966-9 | es_ES |
dc.description.references | Grant, R. W., Geller, S., Cape, J. A., & Espinosa, G. P. (1968). Magnetic and Crystallographic Transitions in theα−Mn2O3−Fe2O3System. Physical Review, 175(2), 686-695. doi:10.1103/physrev.175.686 | es_ES |
dc.description.references | Geller, S. (1971). Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 27(4), 821-828. doi:10.1107/s0567740871002966 | es_ES |
dc.description.references | Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3 under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11). doi:10.1524/zkri.2005.220.11_2005.938 | es_ES |
dc.description.references | Mukherjee, G. D., Vaidya, S. N., & Karunakaran, C. (2002). High Pressure and High Temperature Studies on Manganese Oxides. Phase Transitions, 75(6), 557-566. doi:10.1080/01411590290029818 | es_ES |
dc.description.references | Khalyavin, D. D., Johnson, R. D., Manuel, P., Tsirlin, A. A., Abakumov, A. M., Kozlenko, D. P., … Ovsyannikov, S. V. (2018). Magneto-orbital texture in the perovskite modification of Mn2O3. Physical Review B, 98(1). doi:10.1103/physrevb.98.014426 | es_ES |
dc.description.references | McWhan, D. B., Rice, T. M., & Remeika, J. P. (1969). Mott Transition in Cr-DopedV2O3. Physical Review Letters, 23(24), 1384-1387. doi:10.1103/physrevlett.23.1384 | es_ES |
dc.description.references | Lupi, S., Baldassarre, L., Mansart, B., Perucchi, A., Barinov, A., Dudin, P., … Marsi, M. (2010). A microscopic view on the Mott transition in chromium-doped V2O3. Nature Communications, 1(1). doi:10.1038/ncomms1109 | es_ES |
dc.description.references | Weber, D., Stork, A., Nakhal, S., Wessel, C., Reimann, C., Hermes, W., … Lerch, M. (2011). Bixbyite-Type V2O3—A Metastable Polymorph of Vanadium Sesquioxide. Inorganic Chemistry, 50(14), 6762-6766. doi:10.1021/ic200799n | es_ES |
dc.description.references | McWhan, D. B., & Remeika, J. P. (1970). Metal-Insulator Transition in(V1−xCrx)2O3. Physical Review B, 2(9), 3734-3750. doi:10.1103/physrevb.2.3734 | es_ES |
dc.description.references | Jayaraman, A., McWhan, D. B., Remeika, J. P., & Dernier, P. D. (1970). Critical Behavior of the Mott Transition in Cr-DopedV2O3. Physical Review B, 2(9), 3751-3756. doi:10.1103/physrevb.2.3751 | es_ES |
dc.description.references | Limelette, P. (2003). Universality and Critical Behavior at the Mott Transition. Science, 302(5642), 89-92. doi:10.1126/science.1088386 | es_ES |
dc.description.references | Rodolakis, F., Hansmann, P., Rueff, J.-P., Toschi, A., Haverkort, M. W., Sangiovanni, G., … Marsi, M. (2010). Inequivalent Routes across the Mott Transition inV2O3Explored by X-Ray Absorption. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.047401 | es_ES |
dc.description.references | Alyabyeva, N., Sakai, J., Bavencoffe, M., Wolfman, J., Limelette, P., Funakubo, H., & Ruyter, A. (2018). Metal-insulator transition in V2O3 thin film caused by tip-induced strain. Applied Physics Letters, 113(24), 241603. doi:10.1063/1.5063712 | es_ES |
dc.description.references | Finger, L. W., & Hazen, R. M. (1980). Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. Journal of Applied Physics, 51(10), 5362. doi:10.1063/1.327451 | es_ES |
dc.description.references | Zhang, Q., Wu, X., & Qin, S. (2012). Pressure-Induced Phase Transition of V 2 O 3. Chinese Physics Letters, 29(10), 106101. doi:10.1088/0256-307x/29/10/106101 | es_ES |
dc.description.references | Zhang, Q., Wu, X., & Qin, S. (2012). A nine-fold coordinated vanadium by oxygen in V2O3 from first-principles calculations. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30343-4 | es_ES |
dc.description.references | Aggarwal, P. S., & Goswami, A. (1961). AN OXIDE OF TERVALENT NICKEL. The Journal of Physical Chemistry, 65(11), 2105-2105. doi:10.1021/j100828a503 | es_ES |
dc.description.references | Conell, R. S., Corrigan, D. A., & Powell, B. R. (1992). The electrochromic properties of sputtered nickel oxide films. Solar Energy Materials and Solar Cells, 25(3-4), 301-313. doi:10.1016/0927-0248(92)90075-z | es_ES |
dc.description.references | Jones, P. G., Rumpel, H., Schwarzmann, E., Sheldrick, G. M., & Paulus, H. (1979). Gold(III) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 35(6), 1435-1437. doi:10.1107/s0567740879006622 | es_ES |
dc.description.references | Minomura, S., & Drickamer, H. G. (1963). Effect of Pressure on the Electrical Resistance of some Transition‐Metal Oxides and Sulfides. Journal of Applied Physics, 34(10), 3043-3048. doi:10.1063/1.1729117 | es_ES |
dc.description.references | Chenavas, J., Joubert, J. C., & Marezio, M. (1971). Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Communications, 9(13), 1057-1060. doi:10.1016/0038-1098(71)90462-5 | es_ES |
dc.description.references | Rekhi, S., Dubrovinsky, L. S., Ahuja, R., Saxena, S. K., & Johansson, B. (2000). Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. Journal of Alloys and Compounds, 302(1-2), 16-20. doi:10.1016/s0925-8388(00)00613-7 | es_ES |
dc.description.references | Kota, Y., Yoshimori, Y., Imamura, H., & Kimura, T. (2017). Enhancement of magnetoelectric operating temperature in compressed Cr2O3 under hydrostatic pressure. Applied Physics Letters, 110(4), 042902. doi:10.1063/1.4975000 | es_ES |
dc.description.references | Shim, S.-H., Duffy, T. S., Jeanloz, R., Yoo, C.-S., & Iota, V. (2004). Raman spectroscopy and x-ray diffraction of phase transitions inCr2O3to 61 GPa. Physical Review B, 69(14). doi:10.1103/physrevb.69.144107 | es_ES |
dc.description.references | Dobin, A. Y., Duan, W., & Wentzcovitch, R. M. (2000). Magnetostructural effects and phase transition inCr2O3under pressure. Physical Review B, 62(18), 11997-12000. doi:10.1103/physrevb.62.11997 | es_ES |
dc.description.references | Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747 | es_ES |
dc.description.references | Umemoto, K., & Wentzcovitch, R. M. (2008). Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. Proceedings of the National Academy of Sciences, 105(18), 6526-6530. doi:10.1073/pnas.0711925105 | es_ES |
dc.description.references | Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402 | es_ES |
dc.description.references | Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1 | es_ES |
dc.description.references | Shannon, R. D., & Prewitt, C. T. (1970). Synthesis and structure of a new high-pressure form of Rh2O3. Journal of Solid State Chemistry, 2(1), 134-136. doi:10.1016/0022-4596(70)90041-1 | es_ES |
dc.description.references | Zhuo, S., & Sohlberg, K. (2006). Origin of stability of the high-temperature, low-pressure Rh2O3 III form of rhodium sesquioxide. Journal of Solid State Chemistry, 179(7), 2126-2132. doi:10.1016/j.jssc.2006.04.015 | es_ES |
dc.description.references | Becker, N., Reimann, C., Weber, D., Lüdtke, T., Lerch, M., Bredow, T., & Dronskowski, R. (2017). A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs. Zeitschrift für Kristallographie - Crystalline Materials, 232(1-3). doi:10.1515/zkri-2016-1960 | es_ES |
dc.description.references | Zhang, J., Oganov, A. R., Li, X., Xue, K.-H., Wang, Z., & Dong, H. (2015). Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Physical Review B, 92(18). doi:10.1103/physrevb.92.184104 | es_ES |
dc.description.references | Ai, Z., Huang, Y., Lee, S., & Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044-2049. doi:10.1016/j.jallcom.2010.10.132 | es_ES |
dc.description.references | Zheng, F.-L., Li, G.-R., Ou, Y.-N., Wang, Z.-L., Su, C.-Y., & Tong, Y.-X. (2010). Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chemical Communications, 46(27), 5021. doi:10.1039/c002126a | es_ES |
dc.description.references | Hu, M., Jiang, Y., Sun, W., Wang, H., Jin, C., & Yan, M. (2014). Reversible Conversion-Alloying of Sb2O3as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 6(21), 19449-19455. doi:10.1021/am505505m | es_ES |
dc.description.references | Datta, A., Giri, A. K., & Chakravorty, D. (1993). ac conductivity ofSb2O3-P2O5glasses. Physical Review B, 47(24), 16242-16246. doi:10.1103/physrevb.47.16242 | es_ES |
dc.description.references | Shen, Z.-X., Chen, G.-Q., Ni, J.-H., Li, X.-S., Xiong, S.-M., Qiu, Q.-Y., … Wang, Z.-Y. (1997). Use of Arsenic Trioxide (As2O3 ) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 89(9), 3354-3360. doi:10.1182/blood.v89.9.3354 | es_ES |
dc.description.references | Shen, Z.-X., Shi, Z.-Z., Fang, J., Gu, B.-W., Li, J.-M., Zhu, Y.-M., … Chen, Z. (2004). All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences, 101(15), 5328-5335. doi:10.1073/pnas.0400053101 | es_ES |
dc.description.references | Matsumoto, A., Koyama, Y., Togo, A., Choi, M., & Tanaka, I. (2011). Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3crystal polymorphs. Physical Review B, 83(21). doi:10.1103/physrevb.83.214110 | es_ES |
dc.description.references | Matsumoto, A., Koyama, Y., & Tanaka, I. (2010). Structures and energetics ofBi2O3polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. Physical Review B, 81(9). doi:10.1103/physrevb.81.094117 | es_ES |
dc.description.references | Zhao, Z., Zeng, Q., Zhang, H., Wang, S., Hirai, S., Zeng, Z., & Mao, W. L. (2015). Structural transition and amorphization in compressedα−Sb2O3. Physical Review B, 91(18). doi:10.1103/physrevb.91.184112 | es_ES |
dc.description.references | Sans, J. A., Manjón, F. J., Popescu, C., Cuenca-Gotor, V. P., Gomis, O., Muñoz, A., … Segura, A. (2016). Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He. Physical Review B, 93(5). doi:10.1103/physrevb.93.054102 | es_ES |
dc.description.references | Cuenca-Gotor, V. P., Gomis, O., Sans, J. A., Manjón, F. J., Rodríguez-Hernández, P., & Muñoz, A. (2016). Vibrational and elastic properties of As4O6 and As4O6·2He at high pressures: Study of dynamical and mechanical stability. Journal of Applied Physics, 120(15), 155901. doi:10.1063/1.4964875 | es_ES |
dc.description.references | Guńka, P. A., Dziubek, K. F., Gładysiak, A., Dranka, M., Piechota, J., Hanfland, M., … Zachara, J. (2015). Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He. Crystal Growth & Design, 15(8), 3740-3745. doi:10.1021/acs.cgd.5b00390 | es_ES |
dc.description.references | Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108 | es_ES |
dc.description.references | Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j | es_ES |
dc.description.references | Orosel, D., Dinnebier, R. E., Blatov, V. A., & Jansen, M. (2012). Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Crystallographica Section B Structural Science, 68(1), 1-7. doi:10.1107/s0108768111046751 | es_ES |
dc.description.references | Cornei, N., Tancret, N., Abraham, F., & Mentré, O. (2006). New ε-Bi2O3Metastable Polymorph. Inorganic Chemistry, 45(13), 4886-4888. doi:10.1021/ic0605221 | es_ES |
dc.description.references | Zou, Y., Zhang, W., Li, X., Ma, M., Li, X., Wang, C.-H., … Li, B. (2018). Pressure-induced anomalies and structural instability in compressed β-Sb2O3. Physical Chemistry Chemical Physics, 20(16), 11430-11436. doi:10.1039/c8cp00084k | es_ES |
dc.description.references | Geng, A.-H., Cao, L.-H., Ma, Y.-M., Cui, Q.-L., & Wan, C.-M. (2016). Experimental Observation of Phase Transition in Sb 2 O 3 under High Pressure. Chinese Physics Letters, 33(9), 097401. doi:10.1088/0256-307x/33/9/097401 | es_ES |
dc.description.references | Harwig, H. A. (1978). On the Structure of Bismuthsesquioxide: The ?, ?, ?, and ?-phase. Zeitschrift f�r anorganische und allgemeine Chemie, 444(1), 151-166. doi:10.1002/zaac.19784440118 | es_ES |
dc.description.references | Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402 | es_ES |
dc.description.references | Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Eremets, M. I., Trojan, I. A., & Artemov, V. V. (2006). Equation of state and high-pressure irreversible amorphization in Y3Fe5O12. JETP Letters, 83(1), 37-41. doi:10.1134/s0021364006010097 | es_ES |
dc.description.references | Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D. L. V. K., Wedig, U., Jansen, M., & Senyshyn, A. (2010). High-pressure and high-temperature multianvil synthesis of metastable polymorphs ofBi2O3: Crystal structure and electronic properties. Physical Review B, 82(2). doi:10.1103/physrevb.82.024106 | es_ES |
dc.description.references | Pertlik, F. (1975). Die Kristallstruktur der monoklinen Form von As2O3 (Claudetit II). Monatshefte f�r Chemie, 106(3), 755-762. doi:10.1007/bf00902181 | es_ES |
dc.description.references | Soignard, E., Amin, S. A., Mei, Q., Benmore, C. J., & Yarger, J. L. (2008). High-pressure behavior ofAs2O3: Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 77(14). doi:10.1103/physrevb.77.144113 | es_ES |
dc.description.references | Guńka, P. A., Dranka, M., Piechota, J., Żukowska, G. Z., Zalewska, A., & Zachara, J. (2012). As2O3 Polymorphs: Theoretical Insight into Their Stability and Ammonia Templated Claudetite II Crystallization. Crystal Growth & Design, 12(11), 5663-5670. doi:10.1021/cg3011579 | es_ES |
dc.description.references | Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567 | es_ES |
dc.description.references | Jansen, M., & Moebs, M. (1984). Structural investigations on solid tetraphosphorus hexaoxide. Inorganic Chemistry, 23(26), 4486-4488. doi:10.1021/ic00194a017 | es_ES |
dc.description.references | Clark, G. L., Schieltz, N. C., & Quirke, T. T. (1937). A New Study of the Preparation and Properties of the Higher Oxides of Lead. Journal of the American Chemical Society, 59(11), 2305-2308. doi:10.1021/ja01290a063 | es_ES |
dc.description.references | Bouvaist, J., & Weigel, D. (1970). Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Crystallographica Section A, 26(5), 501-510. doi:10.1107/s0567739470001316 | es_ES |
dc.description.references | Seko, A., Togo, A., Oba, F., & Tanaka, I. (2008). Structure and Stability of a Homologous Series of Tin Oxides. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.045702 | es_ES |
dc.description.references | Zhao, J.-H., Tan, R.-Q., Yang, Y., Xu, W., Li, J., Shen, W.-F., … Song, W.-J. (2015). Synthesis mechanism of heterovalent Sn 2 O 3 nanosheets in oxidation annealing process. Chinese Physics B, 24(7), 070505. doi:10.1088/1674-1056/24/7/070505 | es_ES |
dc.description.references | Kuang, X., Liu, T., Zeng, W., Peng, X., & Wang, Z. (2016). Hydrothermal synthesis and characterization of novel Sn 2 O 3 hierarchical nanostructures. Materials Letters, 165, 235-238. doi:10.1016/j.matlet.2015.10.142 | es_ES |
dc.description.references | Imre, A. R. (2007). On the existence of negative pressure states. physica status solidi (b), 244(3), 893-899. doi:10.1002/pssb.200572708 | es_ES |
dc.description.references | McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716 | es_ES |
dc.description.references | Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Negative pressures in CaWO4 nanocrystals. Journal of Applied Physics, 105(9), 094321. doi:10.1063/1.3116727 | es_ES |
dc.description.references | Matsui, T., Yagasaki, T., Matsumoto, M., & Tanaka, H. (2019). Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability. The Journal of Chemical Physics, 150(4), 041102. doi:10.1063/1.5083021 | es_ES |