- -

Pressure-Induced Phase Transitions in Sesquioxides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pressure-Induced Phase Transitions in Sesquioxides

Mostrar el registro completo del ítem

Manjón, F.; Sans-Tresserras, JÁ.; Ibáñez, J.; Pereira, ALDJ. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals. 9(12):1-32. https://doi.org/10.3390/cryst9120630

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155434

Ficheros en el ítem

Metadatos del ítem

Título: Pressure-Induced Phase Transitions in Sesquioxides
Autor: Manjón, Francisco-Javier Sans-Tresserras, Juan Ángel Ibáñez, Jordi Pereira, André Luis de Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Pressure is an important thermodynamic parameter, allowing the increase of matter density by reducing interatomic distances that result in a change of interatomic interactions. In this context, the long range in which ...[+]
Palabras clave: Sesquioxides , High pressure , Phase transitions
Derechos de uso: Reconocimiento (by)
Fuente:
Crystals. (eissn: 2073-4352 )
DOI: 10.3390/cryst9120630
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/cryst9120630
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/
...[+]
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/
info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094417-B-I00/ES/APROXIMACIONES RACIONALES PARA EL DISEÑO DE NUEVOS MATERIALES MEDIANTE LA COMBINACION DE TEORIA Y EXPERIMENTO/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/
info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/
[-]
Agradecimientos:
This research was funded by Spanish Ministerio de Ciencia, Innovacion y Universidades under grants MAT2016-75586-C4-1/2/3-P, FIS2017-83295-P, PGC2018-094417-B-100, and RED2018-102612-T (MALTA-Consolider-Team network) and ...[+]
Tipo: Artículo

References

Adachi, G., & Imanaka, N. (1998). The Binary Rare Earth Oxides. Chemical Reviews, 98(4), 1479-1514. doi:10.1021/cr940055h

ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002

Manjón, F. J., & Errandonea, D. (2008). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238 [+]
Adachi, G., & Imanaka, N. (1998). The Binary Rare Earth Oxides. Chemical Reviews, 98(4), 1479-1514. doi:10.1021/cr940055h

ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002

Manjón, F. J., & Errandonea, D. (2008). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238

Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163

Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043

Vegas, A., & Isea, R. (1998). Distribution of the M-M Distances in the Rare Earth Oxides. Acta Crystallographica Section B Structural Science, 54(6), 732-740. doi:10.1107/s0108768198003759

Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301

Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187

Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421

Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015

Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223

Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663

Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219

Lonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022

Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027

Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832

Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341

Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720

Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027

Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229

Chen, C.-S., Cheung, K., & Yuan, T.-C. (2007). Novel collider signatures for Little Higgs dark matter models. Physics Letters B, 644(2-3), 158-164. doi:10.1016/j.physletb.2006.11.050

Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114

Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703

Dilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913

Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019

Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504

Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889v

Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391

Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.351

Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705

Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082

Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701

Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y<SUB>2</SUB>O<SUB>3</SUB>:Eu<SUP>3+</SUP> Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752

DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-x

Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042z

Bose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036

Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028

Zhang, Q., Wu, X., & Qin, S. (2017). Pressure-induced phase transition of B-type Y 2 O 3. Chinese Physics B, 26(9), 090703. doi:10.1088/1674-1056/26/9/090703

Chen, G., Peterson, J. R., & Brister, K. E. (1994). An Energy-Dispersive X-Ray Diffraction Study of Monoclinic Eu2O3 under Pressure. Journal of Solid State Chemistry, 111(2), 437-439. doi:10.1006/jssc.1994.1250

Atou, T., Kusaba, K., Tsuchida, Y., Utsumi, W., Yagi, T., & Syono, Y. (1989). Reversible B-type - A-type transition of Sm2O3 under high pressure. Materials Research Bulletin, 24(9), 1171-1176. doi:10.1016/0025-5408(89)90076-7

Hongo, T., Kondo, K., Nakamura, K. G., & Atou, T. (2007). High pressure Raman spectroscopic study of structural phase transition in samarium oxide. Journal of Materials Science, 42(8), 2582-2585. doi:10.1007/s10853-006-1417-5

Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154g

Pandey, K. K., Garg, N., Mishra, A. K., & Sharma, S. M. (2012). High pressure phase transition in Nd2O3. Journal of Physics: Conference Series, 377, 012006. doi:10.1088/1742-6596/377/1/012006

Jiang, S., Liu, J., Bai, L., Li, X., Li, Y., He, S., … Liang, D. (2018). Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Advances, 8(2), 025019. doi:10.1063/1.5018020

Lipp, M. J., Jeffries, J. R., Cynn, H., Park Klepeis, J.-H., Evans, W. J., Mortensen, D. R., … Chow, P. (2016). Comparison of the high-pressure behavior of the cerium oxidesCe2O3andCeO2. Physical Review B, 93(6). doi:10.1103/physrevb.93.064106

Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5

Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103

Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118

WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1

Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267

Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068

Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022

Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105

Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206

Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236

Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497a

Pathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668

Catlow, C. R. A., Guo, Z. X., Miskufova, M., Shevlin, S. A., Smith, A. G. H., Sokol, A. A., … Woodley, S. M. (2010). Advances in computational studies of energy materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3379-3456. doi:10.1098/rsta.2010.0111

Caracas, R. (2005). Prediction of a new phase transition in Al2O3at high pressures. Geophysical Research Letters, 32(6). doi:10.1029/2004gl022204

Funamori, N. (1997). High-Pressure Transformation of Al2O3. Science, 278(5340), 1109-1111. doi:10.1126/science.278.5340.1109

Jephcoat, A. P., Hemley, R. J., & Mao, H. K. (1988). X-ray diffraction of ruby (Al2O3:Cr3+) to 175 GPa. Physica B+C, 150(1-2), 115-121. doi:10.1016/0378-4363(88)90112-x

Dewaele, A., & Torrent, M. (2013). Equation of state ofα-Al2O3. Physical Review B, 88(6). doi:10.1103/physrevb.88.064107

Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., & da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278-4284. doi:10.1021/jp983791o

Hart, H. V., & Drickamer, H. G. (1965). Effect of High Pressure on the Lattice Parameters of Al2O3. The Journal of Chemical Physics, 43(7), 2265-2266. doi:10.1063/1.1697121

Mashimo, T., Tsumoto, K., Nakamura, K., Noguchi, Y., Fukuoka, K., & Syono, Y. (2000). High-pressure phase transformation of corundum (α-Al2O3) observed under shock compression. Geophysical Research Letters, 27(14), 2021-2024. doi:10.1029/2000gl008490

ONO, S., OGANOV, A., KOYAMA, T., & SHIMIZU, H. (2006). Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle. Earth and Planetary Science Letters, 246(3-4), 326-335. doi:10.1016/j.epsl.2006.04.017

Zhao, J., Hearne, G. R., Maaza, M., Laher-Lacour, F., Witcomb, M. J., Le Bihan, T., & Mezouar, M. (2001). Compressibility of nanostructured alumina phases determined from synchrotron x-ray diffraction studies at high pressure. Journal of Applied Physics, 90(7), 3280-3285. doi:10.1063/1.1394915

Thomson, K. T., Wentzcovitch, R. M., & Bukowinski, M. S. T. (1996). Polymorphs of Alumina Predicted by First Principles: Putting Pressure on the Ruby Pressure Scale. Science, 274(5294), 1880-1882. doi:10.1126/science.274.5294.1880

Jahn, S., Madden, P., & Wilson, M. (2004). Dynamic simulation of pressure-driven phase transformations in crystalline Al2O3. Physical Review B, 69(2). doi:10.1103/physrevb.69.020106

Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2005). Transition from theRh2O3(II)-to-CaIrO3structure and the high-pressure-temperature phase diagram of alumina. Physical Review B, 72(2). doi:10.1103/physrevb.72.020103

García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599

Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107

Sans, J. A., Vilaplana, R., Errandonea, D., Cuenca-Gotor, V. P., García-Domene, B., Popescu, C., … Muñoz, A. (2017). Structural and vibrational properties of corundum-type In2O3nanocrystals under compression. Nanotechnology, 28(20), 205701. doi:10.1088/1361-6528/aa6a3f

Lipinska-Kalita, K. E., Chen, B., Kruger, M. B., Ohki, Y., Murowchick, J., & Gogol, E. P. (2003). High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic mediumK2O−SiO2−Ga2O3. Physical Review B, 68(3). doi:10.1103/physrevb.68.035209

Luan, S., Dong, L., & Jia, R. (2019). Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. Journal of Crystal Growth, 505, 74-81. doi:10.1016/j.jcrysgro.2018.09.031

Machon, D., McMillan, P. F., Xu, B., & Dong, J. (2006). High-pressure study of theβ-to-αtransition inGa2O3. Physical Review B, 73(9). doi:10.1103/physrevb.73.094125

Wang, H., He, Y., Chen, W., Zeng, Y. W., Stahl, K., Kikegawa, T., & Jiang, J. Z. (2010). High-pressure behavior of β-Ga2O3 nanocrystals. Journal of Applied Physics, 107(3), 033520. doi:10.1063/1.3296121

Claussen, W. F., & Mackenzie, J. D. (1959). CRYSTALLIZATION OF B2O3AT HIGH PRESSURES1. Journal of the American Chemical Society, 81(4), 1007-1007. doi:10.1021/ja01513a063

Brazhkin, V. V., Katayama, Y., Inamura, Y., Kondrin, M. V., Lyapin, A. G., Popova, S. V., & Voloshin, R. N. (2003). Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure. Journal of Experimental and Theoretical Physics Letters, 78(6), 393-397. doi:10.1134/1.1630134

Nicholas, J., Sinogeikin, S., Kieffer, J., & Bass, J. (2004). Spectroscopic Evidence of Polymorphism in VitreousB2O3. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.215701

Lee, S. K., Mibe, K., Fei, Y., Cody, G. D., & Mysen, B. O. (2005). Structure ofB2O3Glass at High Pressure: AB11Solid-State NMR Study. Physical Review Letters, 94(16). doi:10.1103/physrevlett.94.165507

Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241

Weir, S. T., Mitchell, A. C., & Nellis, W. J. (1996). Electrical resistivity of single‐crystal Al2O3shock‐compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). Journal of Applied Physics, 80(3), 1522-1525. doi:10.1063/1.362946

Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640

Song, H. I., Kim, E. S., & Yoon, K. H. (1988). Phase transformation and characteristics of beta-alumina. Physica B+C, 150(1-2), 148-159. doi:10.1016/0378-4363(88)90117-9

ENGÜRLÜ, S., TAŞLIÇUKUR ÖZTÜRK, Z., & KUŞKONMAZ, N. (2017). Investigation of the Production of β-Al2O3 Solid Electrolyte from Seydişehir α-Al2O3. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 816. doi:10.19113/sdufbed.31721

Duan, W., Wentzcovitch, R. M., & Thomson, K. T. (1998). First-principles study of high-pressure alumina polymorphs. Physical Review B, 57(17), 10363-10369. doi:10.1103/physrevb.57.10363

Oganov, A. R., & Ono, S. (2005). The high-pressure phase of alumina and implications for Earth’s D’’ layer. Proceedings of the National Academy of Sciences, 102(31), 10828-10831. doi:10.1073/pnas.0501800102

Hama, J., & Suito, K. (2002). The evidence for the occurrence of two successive transitions in Al2O3 from the analysis of Hugoniot data. High Temperatures-High Pressures, 34(3), 323-334. doi:10.1068/htjr033

Ono, S., Kikegawa, T., & Ohishi, Y. (2004). High-pressure phase transition of hematite, Fe2O3. Journal of Physics and Chemistry of Solids, 65(8-9), 1527-1530. doi:10.1016/j.jpcs.2003.11.042

Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445-448. doi:10.1038/nature02701

Vaidya, S. N. (1999). High-pressure high-temperature transitions in nanocrystallineγ Al2O3,γ Fe2O3 and TiO2. Bulletin of Materials Science, 22(3), 287-293. doi:10.1007/bf02749933

Mishra, R. S., Lesher, C. E., & Mukherjee, A. K. (1996). High-Pressure Sintering of Nanocrystalline gammaAl2O3. Journal of the American Ceramic Society, 79(11), 2989-2992. doi:10.1111/j.1151-2916.1996.tb08741.x

Vaidya, S. N., Karunakaran, C., Kamath, R. V., Pillai, K. T., & Vaidya, V. N. (1999). New polymorphs of alumina. High Pressure Research, 16(3), 147-160. doi:10.1080/08957959908200288

Vaidya, S. N., Karunakaran, C., Achary, S. N., & Tyagi, A. K. (1999). New polymorphs of alumina: Part II μ and λ alumina. High Pressure Research, 16(4), 265-278. doi:10.1080/08957959908200299

Bekheet, M. F., Schwarz, M. R., Lauterbach, S., Kleebe, H.-J., Kroll, P., Riedel, R., & Gurlo, A. (2013). Orthorhombic In2O3: A Metastable Polymorph of Indium Sesquioxide. Angewandte Chemie International Edition, 52(25), 6531-6535. doi:10.1002/anie.201300644

Atou, T., Kusaba, K., Fukuoka, K., Kikuchi, M., & Syono, Y. (1990). Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. Journal of Solid State Chemistry, 89(2), 378-384. doi:10.1016/0022-4596(90)90280-b

Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., & Weimar, U. (2004). Ambient Pressure Synthesis of Corundum-Type In2O3. Journal of the American Chemical Society, 126(13), 4078-4079. doi:10.1021/ja0318075

Yu, D., Wang, D., & Qian, Y. (2004). Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. Journal of Solid State Chemistry, 177(4-5), 1230-1234. doi:10.1016/j.jssc.2003.10.030

Sorescu, M., Diamandescu, L., Tarabasanu-Mihaila, D., & Teodorescu, V. S. (2004). Nanocrystalline rhombohedral In2O3synthesized by hydrothermal and postannealing pathways. Journal of Materials Science, 39(2), 675-677. doi:10.1023/b:jmsc.0000011529.01603.fc

Åhman, J., Svensson, G., & Albertsson, J. (1996). A Reinvestigation of β-Gallium Oxide. Acta Crystallographica Section C Crystal Structure Communications, 52(6), 1336-1338. doi:10.1107/s0108270195016404

Geller, S. (1960). Crystal Structure of β‐Ga2O3. The Journal of Chemical Physics, 33(3), 676-684. doi:10.1063/1.1731237

Remeika, J. P., & Marezio, M. (1966). GROWTH OF α‐Ga2O3 SINGLE CRYSTALS AT 44 KBARS. Applied Physics Letters, 8(4), 87-88. doi:10.1063/1.1754500

Tsuchiya, T., Yusa, H., & Tsuchiya, J. (2007). Post-Rh2O3(II)transition and the high pressure-temperature phase diagram of gallia: A first-principles and x-ray diffraction study. Physical Review B, 76(17). doi:10.1103/physrevb.76.174108

Kishimura, H., & Matsumoto, H. (2018). Evaluation of the shock-induced phase transition in β-Ga2O3. Japanese Journal of Applied Physics, 57(12), 125503. doi:10.7567/jjap.57.125503

Gurr, G. E., Montgomery, P. W., Knutson, C. D., & Gorres, B. T. (1970). The crystal structure of trigonal diboron trioxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 26(7), 906-915. doi:10.1107/s0567740870003369

Switzer, J. A. (1986). The n‐Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society, 133(4), 722-728. doi:10.1149/1.2108662

Phillips, R. J., Shane, M. J., & Switzer, J. A. (1989). Electrochemical and photoelectrochemical deposition of thallium(III) oxide thin films. Journal of Materials Research, 4(4), 923-929. doi:10.1557/jmr.1989.0923

Van Leeuwen, R. A., Hung, C.-J., Kammler, D. R., & Switzer, J. A. (1995). Optical and Electronic Transport Properties of Electrodeposited Thallium(III) Oxide Films. The Journal of Physical Chemistry, 99(41), 15247-15252. doi:10.1021/j100041a047

Bhattacharya, R. N., Yan, S. L., Xing, Z., Xie, Y., Wu, J. Z., Feldmann, M., … Blaugher, R. D. (2000). Superconducting Thallium Oxide and Mercury Oxide Films. MRS Proceedings, 659. doi:10.1557/proc-659-ii11.2

Ma, C., & Rossman, G. R. (2009). Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94(5-6), 841-844. doi:10.2138/am.2009.3203

Xue, K.-H., Blaise, P., Fonseca, L. R. C., & Nishi, Y. (2013). Prediction of Semimetallic TetragonalHf2O3andZr2O3from First Principles. Physical Review Letters, 110(6). doi:10.1103/physrevlett.110.065502

Ovsyannikov, S. V., Trots, D. M., Kurnosov, A. V., Morgenroth, W., Liermann, H.-P., & Dubrovinsky, L. (2013). Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3. Journal of Physics: Condensed Matter, 25(38), 385401. doi:10.1088/0953-8984/25/38/385401

Pasternak, M. P., Rozenberg, G. K., Machavariani, G. Y., Naaman, O., Taylor, R. D., & Jeanloz, R. (1999). Breakdown of the Mott-Hubbard State inFe2O3: A First-Order Insulator-Metal Transition with Collapse of Magnetism at 50 GPa. Physical Review Letters, 82(23), 4663-4666. doi:10.1103/physrevlett.82.4663

Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428(6981), 409-412. doi:10.1038/nature02413

Kupenko, I., Aprilis, G., Vasiukov, D. M., McCammon, C., Chariton, S., Cerantola, V., … Sanchez-Valle, C. (2019). Magnetism in cold subducting slabs at mantle transition zone depths. Nature, 570(7759), 102-106. doi:10.1038/s41586-019-1254-8

Shokrollahi, H. (2017). A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials, 426, 74-81. doi:10.1016/j.jmmm.2016.11.033

Schrader, R., & B�ttner, G. (1963). Eine neue Eisen(III)-oxidphase: ?-Fe2O3. Zeitschrift f�r anorganische und allgemeine Chemie, 320(5-6), 220-234. doi:10.1002/zaac.19633200503

Xu, H., Lee, S., & Xu, H. (2017). Luogufengite: A new nano-mineral of Fe2O3polymorph with giant coercive field. American Mineralogist, 102(4), 711-719. doi:10.2138/am-2017-5849

Dejoie, C., Sciau, P., Li, W., Noé, L., Mehta, A., Chen, K., … Liu, Z. (2014). Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports, 4(1). doi:10.1038/srep04941

Tronc, E., Chanéac, C., & Jolivet, J. P. (1998). Structural and Magnetic Characterization ofε-Fe2O3. Journal of Solid State Chemistry, 139(1), 93-104. doi:10.1006/jssc.1998.7817

Tuček, J., Zbořil, R., Namai, A., & Ohkoshi, S. (2010). ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chemistry of Materials, 22(24), 6483-6505. doi:10.1021/cm101967h

Tuček, J., Machala, L., Ono, S., Namai, A., Yoshikiyo, M., Imoto, K., … Zbořil, R. (2015). Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 5(1). doi:10.1038/srep15091

Rozenberg, G. K., Dubrovinsky, L. S., Pasternak, M. P., Naaman, O., Le Bihan, T., & Ahuja, R. (2002). High-pressure structural studies of hematiteFe2O3. Physical Review B, 65(6). doi:10.1103/physrevb.65.064112

Badro, J., Fiquet, G., Struzhkin, V. V., Somayazulu, M., Mao, H., Shen, G., & Le Bihan, T. (2002). Nature of the High-Pressure Transition inFe2O3Hematite. Physical Review Letters, 89(20). doi:10.1103/physrevlett.89.205504

Ito, E., Fukui, H., Katsura, T., Yamazaki, D., Yoshino, T., Aizawa, Y., … Funakoshi, K.-I. (2009). Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils. American Mineralogist, 94(2-3), 205-209. doi:10.2138/am.2009.2913

Bykova, E., Bykov, M., Prakapenka, V., Konôpková, Z., Liermann, H.-P., Dubrovinskaia, N., & Dubrovinsky, L. (2013). Novel high pressure monoclinic Fe2O3 polymorph revealed by single-crystal synchrotron X-ray diffraction studies. High Pressure Research, 33(3), 534-545. doi:10.1080/08957959.2013.833613

Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C., Ovsyannikov, S. V., … Prakapenka, V. (2016). Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Communications, 7(1). doi:10.1038/ncomms10661

Shim, S.-H., Bengtson, A., Morgan, D., Sturhahn, W., Catalli, K., Zhao, J., … Prakapenka, V. (2009). Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proceedings of the National Academy of Sciences, 106(14), 5508-5512. doi:10.1073/pnas.0808549106

Syono, Y., Ito, A., Morimoto, S., Suzuki, T., Yagi, T., & Akimoto, S. (1984). Mössbauer study on the high pressure phase of Fe2O3. Solid State Communications, 50(2), 97-100. doi:10.1016/0038-1098(84)90915-3

Nasu, S., Kurimoto, K., Nagatomo, S., Endo, S., & Fujita, F. E. (1986). 57Fe Mössbauer study under high pressure; ε-Fe and Fe2O3. Hyperfine Interactions, 29(1-4), 1583-1586. doi:10.1007/bf02399539

Jiang, J. Z., Olsen, J. S., Gerward, L., & Mørup, S. (1998). Enhanced bulk modulus and reduced transition pressure in γ-Fe 2 O 3 nanocrystals. Europhysics Letters (EPL), 44(5), 620-626. doi:10.1209/epl/i1998-00563-6

Zhu, H., Ma, Y., Yang, H., Ji, C., Hou, D., & Guo, L. (2010). Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Journal of Physics and Chemistry of Solids, 71(8), 1183-1186. doi:10.1016/j.jpcs.2010.03.031

Machala, L., Tuček, J., & Zbořil, R. (2011). Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials, 23(14), 3255-3272. doi:10.1021/cm200397g

Sans, J. A., Monteseguro, V., Garbarino, G., Gich, M., Cerantola, V., Cuartero, V., … Popescu, C. (2018). Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions. Nature Communications, 9(1). doi:10.1038/s41467-018-06966-9

Grant, R. W., Geller, S., Cape, J. A., & Espinosa, G. P. (1968). Magnetic and Crystallographic Transitions in theα−Mn2O3−Fe2O3System. Physical Review, 175(2), 686-695. doi:10.1103/physrev.175.686

Geller, S. (1971). Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 27(4), 821-828. doi:10.1107/s0567740871002966

Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3 under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11). doi:10.1524/zkri.2005.220.11_2005.938

Mukherjee, G. D., Vaidya, S. N., & Karunakaran, C. (2002). High Pressure and High Temperature Studies on Manganese Oxides. Phase Transitions, 75(6), 557-566. doi:10.1080/01411590290029818

Khalyavin, D. D., Johnson, R. D., Manuel, P., Tsirlin, A. A., Abakumov, A. M., Kozlenko, D. P., … Ovsyannikov, S. V. (2018). Magneto-orbital texture in the perovskite modification of Mn2O3. Physical Review B, 98(1). doi:10.1103/physrevb.98.014426

McWhan, D. B., Rice, T. M., & Remeika, J. P. (1969). Mott Transition in Cr-DopedV2O3. Physical Review Letters, 23(24), 1384-1387. doi:10.1103/physrevlett.23.1384

Lupi, S., Baldassarre, L., Mansart, B., Perucchi, A., Barinov, A., Dudin, P., … Marsi, M. (2010). A microscopic view on the Mott transition in chromium-doped V2O3. Nature Communications, 1(1). doi:10.1038/ncomms1109

Weber, D., Stork, A., Nakhal, S., Wessel, C., Reimann, C., Hermes, W., … Lerch, M. (2011). Bixbyite-Type V2O3—A Metastable Polymorph of Vanadium Sesquioxide. Inorganic Chemistry, 50(14), 6762-6766. doi:10.1021/ic200799n

McWhan, D. B., & Remeika, J. P. (1970). Metal-Insulator Transition in(V1−xCrx)2O3. Physical Review B, 2(9), 3734-3750. doi:10.1103/physrevb.2.3734

Jayaraman, A., McWhan, D. B., Remeika, J. P., & Dernier, P. D. (1970). Critical Behavior of the Mott Transition in Cr-DopedV2O3. Physical Review B, 2(9), 3751-3756. doi:10.1103/physrevb.2.3751

Limelette, P. (2003). Universality and Critical Behavior at the Mott Transition. Science, 302(5642), 89-92. doi:10.1126/science.1088386

Rodolakis, F., Hansmann, P., Rueff, J.-P., Toschi, A., Haverkort, M. W., Sangiovanni, G., … Marsi, M. (2010). Inequivalent Routes across the Mott Transition inV2O3Explored by X-Ray Absorption. Physical Review Letters, 104(4). doi:10.1103/physrevlett.104.047401

Alyabyeva, N., Sakai, J., Bavencoffe, M., Wolfman, J., Limelette, P., Funakubo, H., & Ruyter, A. (2018). Metal-insulator transition in V2O3 thin film caused by tip-induced strain. Applied Physics Letters, 113(24), 241603. doi:10.1063/1.5063712

Finger, L. W., & Hazen, R. M. (1980). Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. Journal of Applied Physics, 51(10), 5362. doi:10.1063/1.327451

Zhang, Q., Wu, X., & Qin, S. (2012). Pressure-Induced Phase Transition of V 2 O 3. Chinese Physics Letters, 29(10), 106101. doi:10.1088/0256-307x/29/10/106101

Zhang, Q., Wu, X., & Qin, S. (2012). A nine-fold coordinated vanadium by oxygen in V2O3 from first-principles calculations. The European Physical Journal B, 85(8). doi:10.1140/epjb/e2012-30343-4

Aggarwal, P. S., & Goswami, A. (1961). AN OXIDE OF TERVALENT NICKEL. The Journal of Physical Chemistry, 65(11), 2105-2105. doi:10.1021/j100828a503

Conell, R. S., Corrigan, D. A., & Powell, B. R. (1992). The electrochromic properties of sputtered nickel oxide films. Solar Energy Materials and Solar Cells, 25(3-4), 301-313. doi:10.1016/0927-0248(92)90075-z

Jones, P. G., Rumpel, H., Schwarzmann, E., Sheldrick, G. M., & Paulus, H. (1979). Gold(III) oxide. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 35(6), 1435-1437. doi:10.1107/s0567740879006622

Minomura, S., & Drickamer, H. G. (1963). Effect of Pressure on the Electrical Resistance of some Transition‐Metal Oxides and Sulfides. Journal of Applied Physics, 34(10), 3043-3048. doi:10.1063/1.1729117

Chenavas, J., Joubert, J. C., & Marezio, M. (1971). Low-spin → high-spin state transition in high pressure cobalt sesquioxide. Solid State Communications, 9(13), 1057-1060. doi:10.1016/0038-1098(71)90462-5

Rekhi, S., Dubrovinsky, L. S., Ahuja, R., Saxena, S. K., & Johansson, B. (2000). Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. Journal of Alloys and Compounds, 302(1-2), 16-20. doi:10.1016/s0925-8388(00)00613-7

Kota, Y., Yoshimori, Y., Imamura, H., & Kimura, T. (2017). Enhancement of magnetoelectric operating temperature in compressed Cr2O3 under hydrostatic pressure. Applied Physics Letters, 110(4), 042902. doi:10.1063/1.4975000

Shim, S.-H., Duffy, T. S., Jeanloz, R., Yoo, C.-S., & Iota, V. (2004). Raman spectroscopy and x-ray diffraction of phase transitions inCr2O3to 61 GPa. Physical Review B, 69(14). doi:10.1103/physrevb.69.144107

Dobin, A. Y., Duan, W., & Wentzcovitch, R. M. (2000). Magnetostructural effects and phase transition inCr2O3under pressure. Physical Review B, 62(18), 11997-12000. doi:10.1103/physrevb.62.11997

Nishio-Hamane, D., Katagiri, M., Niwa, K., Sano-Furukawa, A., Okada, T., & Yagi, T. (2009). A new high-pressure polymorph of Ti2O3: implication for high-pressure phase transition in sesquioxides. High Pressure Research, 29(3), 379-388. doi:10.1080/08957950802665747

Umemoto, K., & Wentzcovitch, R. M. (2008). Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. Proceedings of the National Academy of Sciences, 105(18), 6526-6530. doi:10.1073/pnas.0711925105

Ovsyannikov, S. V., Wu, X., Shchennikov, V. V., Karkin, A. E., Dubrovinskaia, N., Garbarino, G., & Dubrovinsky, L. (2010). Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3under high pressures and high temperatures. Journal of Physics: Condensed Matter, 22(37), 375402. doi:10.1088/0953-8984/22/37/375402

Biesterbos, J. W. M., & Hornstra, J. (1973). The crystal structure of the high-temperature, low-pressure form of Rh2O3. Journal of the Less Common Metals, 30(1), 121-125. doi:10.1016/0022-5088(73)90013-1

Shannon, R. D., & Prewitt, C. T. (1970). Synthesis and structure of a new high-pressure form of Rh2O3. Journal of Solid State Chemistry, 2(1), 134-136. doi:10.1016/0022-4596(70)90041-1

Zhuo, S., & Sohlberg, K. (2006). Origin of stability of the high-temperature, low-pressure Rh2O3 III form of rhodium sesquioxide. Journal of Solid State Chemistry, 179(7), 2126-2132. doi:10.1016/j.jssc.2006.04.015

Becker, N., Reimann, C., Weber, D., Lüdtke, T., Lerch, M., Bredow, T., & Dronskowski, R. (2017). A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs. Zeitschrift für Kristallographie - Crystalline Materials, 232(1-3). doi:10.1515/zkri-2016-1960

Zhang, J., Oganov, A. R., Li, X., Xue, K.-H., Wang, Z., & Dong, H. (2015). Pressure-induced novel compounds in the Hf-O system from first-principles calculations. Physical Review B, 92(18). doi:10.1103/physrevb.92.184104

Ai, Z., Huang, Y., Lee, S., & Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044-2049. doi:10.1016/j.jallcom.2010.10.132

Zheng, F.-L., Li, G.-R., Ou, Y.-N., Wang, Z.-L., Su, C.-Y., & Tong, Y.-X. (2010). Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chemical Communications, 46(27), 5021. doi:10.1039/c002126a

Hu, M., Jiang, Y., Sun, W., Wang, H., Jin, C., & Yan, M. (2014). Reversible Conversion-Alloying of Sb2O3as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 6(21), 19449-19455. doi:10.1021/am505505m

Datta, A., Giri, A. K., & Chakravorty, D. (1993). ac conductivity ofSb2O3-P2O5glasses. Physical Review B, 47(24), 16242-16246. doi:10.1103/physrevb.47.16242

Shen, Z.-X., Chen, G.-Q., Ni, J.-H., Li, X.-S., Xiong, S.-M., Qiu, Q.-Y., … Wang, Z.-Y. (1997). Use of Arsenic Trioxide (As2O3 ) in the Treatment of Acute Promyelocytic Leukemia (APL): II. Clinical Efficacy and Pharmacokinetics in Relapsed Patients. Blood, 89(9), 3354-3360. doi:10.1182/blood.v89.9.3354

Shen, Z.-X., Shi, Z.-Z., Fang, J., Gu, B.-W., Li, J.-M., Zhu, Y.-M., … Chen, Z. (2004). All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proceedings of the National Academy of Sciences, 101(15), 5328-5335. doi:10.1073/pnas.0400053101

Matsumoto, A., Koyama, Y., Togo, A., Choi, M., & Tanaka, I. (2011). Electronic structures of dynamically stable As2O3, Sb2O3, and Bi2O3crystal polymorphs. Physical Review B, 83(21). doi:10.1103/physrevb.83.214110

Matsumoto, A., Koyama, Y., & Tanaka, I. (2010). Structures and energetics ofBi2O3polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. Physical Review B, 81(9). doi:10.1103/physrevb.81.094117

Zhao, Z., Zeng, Q., Zhang, H., Wang, S., Hirai, S., Zeng, Z., & Mao, W. L. (2015). Structural transition and amorphization in compressedα−Sb2O3. Physical Review B, 91(18). doi:10.1103/physrevb.91.184112

Sans, J. A., Manjón, F. J., Popescu, C., Cuenca-Gotor, V. P., Gomis, O., Muñoz, A., … Segura, A. (2016). Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He. Physical Review B, 93(5). doi:10.1103/physrevb.93.054102

Cuenca-Gotor, V. P., Gomis, O., Sans, J. A., Manjón, F. J., Rodríguez-Hernández, P., & Muñoz, A. (2016). Vibrational and elastic properties of As4O6 and As4O6·2He at high pressures: Study of dynamical and mechanical stability. Journal of Applied Physics, 120(15), 155901. doi:10.1063/1.4964875

Guńka, P. A., Dziubek, K. F., Gładysiak, A., Dranka, M., Piechota, J., Hanfland, M., … Zachara, J. (2015). Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He. Crystal Growth & Design, 15(8), 3740-3745. doi:10.1021/acs.cgd.5b00390

Pereira, A. L. J., Gracia, L., Santamaría-Pérez, D., Vilaplana, R., Manjón, F. J., Errandonea, D., … Beltrán, A. (2012). Structural and vibrational study of cubic Sb2O3under high pressure. Physical Review B, 85(17). doi:10.1103/physrevb.85.174108

Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j

Orosel, D., Dinnebier, R. E., Blatov, V. A., & Jansen, M. (2012). Structure of a new high-pressure–high-temperature modification of antimony(III) oxide, γ-Sb2O3, from high-resolution synchrotron powder diffraction data. Acta Crystallographica Section B Structural Science, 68(1), 1-7. doi:10.1107/s0108768111046751

Cornei, N., Tancret, N., Abraham, F., & Mentré, O. (2006). New ε-Bi2O3Metastable Polymorph. Inorganic Chemistry, 45(13), 4886-4888. doi:10.1021/ic0605221

Zou, Y., Zhang, W., Li, X., Ma, M., Li, X., Wang, C.-H., … Li, B. (2018). Pressure-induced anomalies and structural instability in compressed β-Sb2O3. Physical Chemistry Chemical Physics, 20(16), 11430-11436. doi:10.1039/c8cp00084k

Geng, A.-H., Cao, L.-H., Ma, Y.-M., Cui, Q.-L., & Wan, C.-M. (2016). Experimental Observation of Phase Transition in Sb 2 O 3 under High Pressure. Chinese Physics Letters, 33(9), 097401. doi:10.1088/0256-307x/33/9/097401

Harwig, H. A. (1978). On the Structure of Bismuthsesquioxide: The ?, ?, ?, and ?-phase. Zeitschrift f�r anorganische und allgemeine Chemie, 444(1), 151-166. doi:10.1002/zaac.19784440118

Pereira, A. L. J., Errandonea, D., Beltrán, A., Gracia, L., Gomis, O., Sans, J. A., … Popescu, C. (2013). Structural study of α-Bi2O3under pressure. Journal of Physics: Condensed Matter, 25(47), 475402. doi:10.1088/0953-8984/25/47/475402

Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Eremets, M. I., Trojan, I. A., & Artemov, V. V. (2006). Equation of state and high-pressure irreversible amorphization in Y3Fe5O12. JETP Letters, 83(1), 37-41. doi:10.1134/s0021364006010097

Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D. L. V. K., Wedig, U., Jansen, M., & Senyshyn, A. (2010). High-pressure and high-temperature multianvil synthesis of metastable polymorphs ofBi2O3: Crystal structure and electronic properties. Physical Review B, 82(2). doi:10.1103/physrevb.82.024106

Pertlik, F. (1975). Die Kristallstruktur der monoklinen Form von As2O3 (Claudetit II). Monatshefte f�r Chemie, 106(3), 755-762. doi:10.1007/bf00902181

Soignard, E., Amin, S. A., Mei, Q., Benmore, C. J., & Yarger, J. L. (2008). High-pressure behavior ofAs2O3: Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 77(14). doi:10.1103/physrevb.77.144113

Guńka, P. A., Dranka, M., Piechota, J., Żukowska, G. Z., Zalewska, A., & Zachara, J. (2012). As2O3 Polymorphs: Theoretical Insight into Their Stability and Ammonia Templated Claudetite II Crystallization. Crystal Growth & Design, 12(11), 5663-5670. doi:10.1021/cg3011579

Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567

Jansen, M., & Moebs, M. (1984). Structural investigations on solid tetraphosphorus hexaoxide. Inorganic Chemistry, 23(26), 4486-4488. doi:10.1021/ic00194a017

Clark, G. L., Schieltz, N. C., & Quirke, T. T. (1937). A New Study of the Preparation and Properties of the Higher Oxides of Lead. Journal of the American Chemical Society, 59(11), 2305-2308. doi:10.1021/ja01290a063

Bouvaist, J., & Weigel, D. (1970). Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Crystallographica Section A, 26(5), 501-510. doi:10.1107/s0567739470001316

Seko, A., Togo, A., Oba, F., & Tanaka, I. (2008). Structure and Stability of a Homologous Series of Tin Oxides. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.045702

Zhao, J.-H., Tan, R.-Q., Yang, Y., Xu, W., Li, J., Shen, W.-F., … Song, W.-J. (2015). Synthesis mechanism of heterovalent Sn 2 O 3 nanosheets in oxidation annealing process. Chinese Physics B, 24(7), 070505. doi:10.1088/1674-1056/24/7/070505

Kuang, X., Liu, T., Zeng, W., Peng, X., & Wang, Z. (2016). Hydrothermal synthesis and characterization of novel Sn 2 O 3 hierarchical nanostructures. Materials Letters, 165, 235-238. doi:10.1016/j.matlet.2015.10.142

Imre, A. R. (2007). On the existence of negative pressure states. physica status solidi (b), 244(3), 893-899. doi:10.1002/pssb.200572708

McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716

Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Negative pressures in CaWO4 nanocrystals. Journal of Applied Physics, 105(9), 094321. doi:10.1063/1.3116727

Matsui, T., Yagasaki, T., Matsumoto, M., & Tanaka, H. (2019). Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability. The Journal of Chemical Physics, 150(4), 041102. doi:10.1063/1.5083021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem