- -

Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costa-Broseta, Álvaro es_ES
dc.contributor.author Perea-Resa, Carlos es_ES
dc.contributor.author Castillo, Mari-Cruz es_ES
dc.contributor.author Ruíz, M. Fernanda es_ES
dc.contributor.author Salinas, Julio es_ES
dc.contributor.author LEON RAMOS, JOSE es_ES
dc.date.accessioned 2020-11-24T04:31:35Z
dc.date.available 2020-11-24T04:31:35Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155495
dc.description.abstract [EN] Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation. es_ES
dc.description.sponsorship We thank Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. This work was supported by grants from MINECO of Spain Government and FEDER EU funds [BIO2014-56067-P, BIO2017-82945-P to JL and BIO2016-79187-R to JS]. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ABA es_ES
dc.subject Anthocyanins es_ES
dc.subject Arabidopsis es_ES
dc.subject CBFs es_ES
dc.subject Cold acclimation es_ES
dc.subject Freezing tolerance es_ES
dc.subject Nitric oxide es_ES
dc.title Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erz115 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-79187-R/ES/CARACTERIZACION DE NUEVOS MECANISMOS DE REGULACION DEL SPLICING DE PRE-MRNAS IMPLICADOS EN LA TOLERANCIA DE LAS PLANTAS A LAS HELADAS Y A OTROS ESTRESES ABIOTICOS RELACIONADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82945-P/ES/TOLERANCIA AL OXIGENO Y AL OXIDO NITRICO TRAS HIPOXIA EN ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-56067-P/ES/CONTROL DE LA PRODUCCION, PERCEPCION Y SEÑALIZACION DE NO POR MODIFICACIONES POSTRADUCCIONALES Y PROTEOLISIS DIRIGIDA POR LA SECUENCIA AMINOTERMINAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Costa-Broseta, Á.; Perea-Resa, C.; Castillo, M.; Ruíz, MF.; Salinas, J.; Leon Ramos, J. (2019). Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany. 70(12):3283-3296. https://doi.org/10.1093/jxb/erz115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/erz115 es_ES
dc.description.upvformatpinicio 3283 es_ES
dc.description.upvformatpfin 3296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 30869795 es_ES
dc.identifier.pmcid PMC6598078 es_ES
dc.relation.pasarela S\406683 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Adams, S., & Carré, I. A. (2011). Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry, 49, 53-69. doi:10.1042/bse0490053 es_ES
dc.description.references Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536-6544. doi:10.1021/bi00268a033 es_ES
dc.description.references Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193 es_ES
dc.description.references Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4 es_ES
dc.description.references Barrero-Gil, J., & Salinas, J. (2013). Post-translational regulation of cold acclimation response. Plant Science, 205-206, 48-54. doi:10.1016/j.plantsci.2013.01.008 es_ES
dc.description.references Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383 es_ES
dc.description.references Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W. M., … Baudouin, E. (2010). Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist, 189(2), 415-427. doi:10.1111/j.1469-8137.2010.03500.x es_ES
dc.description.references Castillo, M. C., & León, J. (2008). Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 59(8), 2171-2179. doi:10.1093/jxb/ern079 es_ES
dc.description.references Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981 es_ES
dc.description.references Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108 es_ES
dc.description.references Chen, M., & Thelen, J. J. (2016). Acyl-lipid desaturase 1primes cold acclimation response inArabidopsis. Physiologia Plantarum, 158(1), 11-22. doi:10.1111/ppl.12448 es_ES
dc.description.references Costa-Broseta, Á., Perea-Resa, C., Castillo, M.-C., Ruíz, M. F., Salinas, J., & León, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports, 8(1). doi:10.1038/s41598-018-27668-8 es_ES
dc.description.references Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 148(2), 1094-1105. doi:10.1104/pp.108.122945 es_ES
dc.description.references Diaz, C., Saliba-Colombani, V., Loudet, O., Belluomo, P., Moreau, L., Daniel-Vedele, F., … Masclaux-Daubresse, C. (2006). Leaf Yellowing and Anthocyanin Accumulation are Two Genetically Independent Strategies in Response to Nitrogen Limitation in Arabidopsis thaliana. Plant and Cell Physiology, 47(1), 74-83. doi:10.1093/pcp/pci225 es_ES
dc.description.references Eremina, M., Unterholzner, S. J., Rathnayake, A. I., Castellanos, M., Khan, M., Kugler, K. G., … Poppenberger, B. (2016). Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences, 113(40), E5982-E5991. doi:10.1073/pnas.1611477113 es_ES
dc.description.references Fan, J., Chen, K., Amombo, E., Hu, Z., Chen, L., & Fu, J. (2015). Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLOS ONE, 10(7), e0132991. doi:10.1371/journal.pone.0132991 es_ES
dc.description.references Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770 es_ES
dc.description.references Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026 es_ES
dc.description.references Igamberdiev, A. U., Ratcliffe, R. G., & Gupta, K. J. (2014). Plant mitochondria: Source and target for nitric oxide. Mitochondrion, 19, 329-333. doi:10.1016/j.mito.2014.02.003 es_ES
dc.description.references Jensen, M. K., Lindemose, S., de Masi, F., Reimer, J. J., Nielsen, M., Perera, V., … Skriver, K. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 3(1), 321-327. doi:10.1016/j.fob.2013.07.006 es_ES
dc.description.references Jeon, J., Kim, N. Y., Kim, S., Kang, N. Y., Novák, O., Ku, S.-J., … Kim, J. (2010). A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 285(30), 23371-23386. doi:10.1074/jbc.m109.096644 es_ES
dc.description.references Kakei, Y., & Shimada, Y. (2014). AtCAST3.0 Update: A Web-Based Tool for Analysis of Transcriptome Data by Searching Similarities in Gene Expression Profiles. Plant and Cell Physiology, 56(1), e7-e7. doi:10.1093/pcp/pcu174 es_ES
dc.description.references Krol, M., Gray, G. R., Huner, N. P. A., Hurry, V. M., Öquist, G., & Malek, L. (1995). Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany, 73(8), 1119-1127. doi:10.1139/b95-122 es_ES
dc.description.references Lee, H. G., & Seo, P. J. (2015). The MYB 96– HHP module integrates cold and abscisic acid signaling to activate the CBF – COR pathway in Arabidopsis. The Plant Journal, 82(6), 962-977. doi:10.1111/tpj.12866 es_ES
dc.description.references León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454 es_ES
dc.description.references Li, D., Li, Y., Zhang, L., Wang, X., Zhao, Z., Tao, Z., … Yang, Y. (2014). Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences, 15(5), 8473-8490. doi:10.3390/ijms15058473 es_ES
dc.description.references Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042 es_ES
dc.description.references Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 es_ES
dc.description.references Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., & Shigeoka, S. (2009). Arabidopsis NAC Transcription Factor, ANAC078, Regulates Flavonoid Biosynthesis under High-light. Plant and Cell Physiology, 50(12), 2210-2222. doi:10.1093/pcp/pcp159 es_ES
dc.description.references Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00170 es_ES
dc.description.references Park, S., Lee, C.-M., Doherty, C. J., Gilmour, S. J., Kim, Y., & Thomashow, M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal, 82(2), 193-207. doi:10.1111/tpj.12796 es_ES
dc.description.references Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V., & Salinas, J. (2017). Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant, 10(6), 791-804. doi:10.1016/j.molp.2017.03.012 es_ES
dc.description.references Persak, H., & Pitzschke, A. (2014). Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress. International Journal of Molecular Sciences, 15(2), 2517-2537. doi:10.3390/ijms15022517 es_ES
dc.description.references Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181(3), 219-229. doi:10.1016/j.plantsci.2011.05.009 es_ES
dc.description.references PUYAUBERT, J., & BAUDOUIN, E. (2014). New clues for a cold case: nitric oxide response to low temperature. Plant, Cell & Environment, 37(12), 2623-2630. doi:10.1111/pce.12329 es_ES
dc.description.references Rahman, A. (2012). Auxin: a regulator of cold stress response. Physiologia Plantarum, 147(1), 28-35. doi:10.1111/j.1399-3054.2012.01617.x es_ES
dc.description.references Responses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects. (2004). Plant Biology, 6(1), 81-90. doi:10.1055/s-2004-815733 es_ES
dc.description.references Reyes-Diaz, M., Ulloa, N., Zuniga-Feest, A., Gutierrez, A., Gidekel, M., Alberdi, M., … Bravo, L. A. (2006). Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany, 57(14), 3687-3696. doi:10.1093/jxb/erl125 es_ES
dc.description.references Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238 es_ES
dc.description.references Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041 es_ES
dc.description.references Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., & Hincha, D. K. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 6(1). doi:10.1038/srep34027 es_ES
dc.description.references Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7 es_ES
dc.description.references Shi, Y., Ding, Y., & Yang, S. (2018). Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 23(7), 623-637. doi:10.1016/j.tplants.2018.04.002 es_ES
dc.description.references Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2005). Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 140(2), 637-646. doi:10.1104/pp.105.072579 es_ES
dc.description.references Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38-49. doi:10.1016/j.phytochem.2014.03.024 es_ES
dc.description.references Takahashi, D., Kawamura, Y., & Uemura, M. (2016). Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 67(17), 5203-5215. doi:10.1093/jxb/erw279 es_ES
dc.description.references Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571 es_ES
dc.description.references Wang, X., Bian, Y., Cheng, K., Zou, H., Sun, S. S.-M., & He, J.-X. (2012). A Comprehensive Differential Proteomic Study of Nitrate Deprivation inArabidopsisReveals Complex Regulatory Networks of Plant Nitrogen Responses. Journal of Proteome Research, 11(4), 2301-2315. doi:10.1021/pr2010764 es_ES
dc.description.references Weiser, C. J. (1970). Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, 169(3952), 1269-1278. doi:10.1126/science.169.3952.1269 es_ES
dc.description.references Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., … Li, J. (2010). A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochemical and Biophysical Research Communications, 394(4), 1018-1023. doi:10.1016/j.bbrc.2010.03.114 es_ES
dc.description.references Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996 es_ES
dc.description.references Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M., & Shen, L. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62(2), 121-126. doi:10.1016/j.postharvbio.2011.05.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem