Adams, S., & Carré, I. A. (2011). Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry, 49, 53-69. doi:10.1042/bse0490053
Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536-6544. doi:10.1021/bi00268a033
Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193
[+]
Adams, S., & Carré, I. A. (2011). Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry, 49, 53-69. doi:10.1042/bse0490053
Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536-6544. doi:10.1021/bi00268a033
Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193
Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4
Barrero-Gil, J., & Salinas, J. (2013). Post-translational regulation of cold acclimation response. Plant Science, 205-206, 48-54. doi:10.1016/j.plantsci.2013.01.008
Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383
Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W. M., … Baudouin, E. (2010). Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist, 189(2), 415-427. doi:10.1111/j.1469-8137.2010.03500.x
Castillo, M. C., & León, J. (2008). Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 59(8), 2171-2179. doi:10.1093/jxb/ern079
Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981
Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108
Chen, M., & Thelen, J. J. (2016). Acyl-lipid desaturase 1primes cold acclimation response inArabidopsis. Physiologia Plantarum, 158(1), 11-22. doi:10.1111/ppl.12448
Costa-Broseta, Á., Perea-Resa, C., Castillo, M.-C., Ruíz, M. F., Salinas, J., & León, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports, 8(1). doi:10.1038/s41598-018-27668-8
Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 148(2), 1094-1105. doi:10.1104/pp.108.122945
Diaz, C., Saliba-Colombani, V., Loudet, O., Belluomo, P., Moreau, L., Daniel-Vedele, F., … Masclaux-Daubresse, C. (2006). Leaf Yellowing and Anthocyanin Accumulation are Two Genetically Independent Strategies in Response to Nitrogen Limitation in Arabidopsis thaliana. Plant and Cell Physiology, 47(1), 74-83. doi:10.1093/pcp/pci225
Eremina, M., Unterholzner, S. J., Rathnayake, A. I., Castellanos, M., Khan, M., Kugler, K. G., … Poppenberger, B. (2016). Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences, 113(40), E5982-E5991. doi:10.1073/pnas.1611477113
Fan, J., Chen, K., Amombo, E., Hu, Z., Chen, L., & Fu, J. (2015). Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLOS ONE, 10(7), e0132991. doi:10.1371/journal.pone.0132991
Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770
Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026
Igamberdiev, A. U., Ratcliffe, R. G., & Gupta, K. J. (2014). Plant mitochondria: Source and target for nitric oxide. Mitochondrion, 19, 329-333. doi:10.1016/j.mito.2014.02.003
Jensen, M. K., Lindemose, S., de Masi, F., Reimer, J. J., Nielsen, M., Perera, V., … Skriver, K. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3
in Arabidopsis thaliana. FEBS Open Bio, 3(1), 321-327. doi:10.1016/j.fob.2013.07.006
Jeon, J., Kim, N. Y., Kim, S., Kang, N. Y., Novák, O., Ku, S.-J., … Kim, J. (2010). A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 285(30), 23371-23386. doi:10.1074/jbc.m109.096644
Kakei, Y., & Shimada, Y. (2014). AtCAST3.0 Update: A Web-Based Tool for Analysis of Transcriptome Data by Searching Similarities in Gene Expression Profiles. Plant and Cell Physiology, 56(1), e7-e7. doi:10.1093/pcp/pcu174
Krol, M., Gray, G. R., Huner, N. P. A., Hurry, V. M., Öquist, G., & Malek, L. (1995). Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany, 73(8), 1119-1127. doi:10.1139/b95-122
Lee, H. G., & Seo, P. J. (2015). The
MYB
96–
HHP
module integrates cold and abscisic acid signaling to activate the
CBF
–
COR
pathway in Arabidopsis. The Plant Journal, 82(6), 962-977. doi:10.1111/tpj.12866
León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454
Li, D., Li, Y., Zhang, L., Wang, X., Zhao, Z., Tao, Z., … Yang, Y. (2014). Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences, 15(5), 8473-8490. doi:10.3390/ijms15058473
Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042
Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023
Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., & Shigeoka, S. (2009). Arabidopsis NAC Transcription Factor, ANAC078, Regulates Flavonoid Biosynthesis under High-light. Plant and Cell Physiology, 50(12), 2210-2222. doi:10.1093/pcp/pcp159
Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00170
Park, S., Lee, C.-M., Doherty, C. J., Gilmour, S. J., Kim, Y., & Thomashow, M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal, 82(2), 193-207. doi:10.1111/tpj.12796
Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V., & Salinas, J. (2017). Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant, 10(6), 791-804. doi:10.1016/j.molp.2017.03.012
Persak, H., & Pitzschke, A. (2014). Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress. International Journal of Molecular Sciences, 15(2), 2517-2537. doi:10.3390/ijms15022517
Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181(3), 219-229. doi:10.1016/j.plantsci.2011.05.009
PUYAUBERT, J., & BAUDOUIN, E. (2014). New clues for a cold case: nitric oxide response to low temperature. Plant, Cell & Environment, 37(12), 2623-2630. doi:10.1111/pce.12329
Rahman, A. (2012). Auxin: a regulator of cold stress response. Physiologia Plantarum, 147(1), 28-35. doi:10.1111/j.1399-3054.2012.01617.x
Responses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects. (2004). Plant Biology, 6(1), 81-90. doi:10.1055/s-2004-815733
Reyes-Diaz, M., Ulloa, N., Zuniga-Feest, A., Gutierrez, A., Gidekel, M., Alberdi, M., … Bravo, L. A. (2006). Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany, 57(14), 3687-3696. doi:10.1093/jxb/erl125
Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238
Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041
Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., & Hincha, D. K. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 6(1). doi:10.1038/srep34027
Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7
Shi, Y., Ding, Y., & Yang, S. (2018). Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 23(7), 623-637. doi:10.1016/j.tplants.2018.04.002
Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2005). Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 140(2), 637-646. doi:10.1104/pp.105.072579
Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38-49. doi:10.1016/j.phytochem.2014.03.024
Takahashi, D., Kawamura, Y., & Uemura, M. (2016). Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 67(17), 5203-5215. doi:10.1093/jxb/erw279
Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571
Wang, X., Bian, Y., Cheng, K., Zou, H., Sun, S. S.-M., & He, J.-X. (2012). A Comprehensive Differential Proteomic Study of Nitrate Deprivation inArabidopsisReveals Complex Regulatory Networks of Plant Nitrogen Responses. Journal of Proteome Research, 11(4), 2301-2315. doi:10.1021/pr2010764
Weiser, C. J. (1970). Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, 169(3952), 1269-1278. doi:10.1126/science.169.3952.1269
Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., … Li, J. (2010). A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochemical and Biophysical Research Communications, 394(4), 1018-1023. doi:10.1016/j.bbrc.2010.03.114
Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996
Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M., & Shen, L. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62(2), 121-126. doi:10.1016/j.postharvbio.2011.05.013
[-]