- -

Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer

Show full item record

Rivas-Sendra, A.; Corral Martínez, P.; Porcel, R.; Camacho-Fernández, C.; Calabuig-Serna, A.; Seguí-Simarro, JM. (2019). Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer. Journal of Experimental Botany. 70(4):1267-1281. https://doi.org/10.1093/jxb/ery458

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155497

Files in this item

Item Metadata

Title: Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer
Author: Rivas-Sendra, Alba Corral Martínez, Patricia Porcel, R. Camacho-Fernández, Carolina Calabuig-Serna, Antonio Seguí-Simarro, Jose M.
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
Abstract:
[EN] Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied ...[+]
Subjects: Androgenesis , Brassica napus , Calcium , Cellulose , Cell wall , Doubled haploids , Eggplant , Rapeseed
Copyrigths: Reconocimiento (by)
Source:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/ery458
Publisher:
Oxford University Press
Publisher version: https:/doi.org/10.1093/jxb/ery458
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/
MINECO/AGL2017-88135-R
Thanks:
Thanks are due to the Electron Microscopy Service of Universitat Politecnica de Valencia, Marisol Gascon (IBMCP Microscopy Service), Dr Kim Boutilier (WUR, Wageningen) for hosting ARS at her lab, and Dr Samantha Vernhettes ...[+]
Type: Artículo

References

Abramova, L. I. (2003). Russian Journal of Plant Physiology, 50(3), 324-329. doi:10.1023/a:1023866019102

Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523

Cordewener, J., Bergervoet, J., & Liu, C.-M. (2000). Changes in Protein Synthesis and Phosphorylation during Microspore Embryogenesis in Brassica napus. Journal of Plant Physiology, 156(2), 156-163. doi:10.1016/s0176-1617(00)80300-4 [+]
Abramova, L. I. (2003). Russian Journal of Plant Physiology, 50(3), 324-329. doi:10.1023/a:1023866019102

Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523

Cordewener, J., Bergervoet, J., & Liu, C.-M. (2000). Changes in Protein Synthesis and Phosphorylation during Microspore Embryogenesis in Brassica napus. Journal of Plant Physiology, 156(2), 156-163. doi:10.1016/s0176-1617(00)80300-4

Corral-Martínez, P., García-Fortea, E., Bernard, S., Driouich, A., & Seguí-Simarro, J. M. (2016). Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development inBrassica napus. Plant and Cell Physiology, 57(10), 2161-2174. doi:10.1093/pcp/pcw133

Fortes, A. M., Testillano, P. S., Del Carmen Risueño, M., & Pais, M. S. (2002). Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget. Physiologia Plantarum, 116(1), 113-120. doi:10.1034/j.1399-3054.2002.1160114.x

Furch, A. C. U., Hafke, J. B., Schulz, A., & van Bel, A. J. E. (2007). Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. Journal of Experimental Botany, 58(11), 2827-2838. doi:10.1093/jxb/erm143

Grewal, R. K., Lulsdorf, M., Croser, J., Ochatt, S., Vandenberg, A., & Warkentin, T. D. (2009). Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Reports, 28(8), 1289-1299. doi:10.1007/s00299-009-0731-1

Hoekstra, S., van Bergen, S., van Brouwershaven, I. ., Schilperoort, R. ., & Wang, M. (1997). Androgenesis in Hordeum vulgare L.: Effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Science, 126(2), 211-218. doi:10.1016/s0168-9452(97)00096-4

Hong, Z., Delauney, A. J., & Verma, D. P. S. (2001). A Cell Plate–Specific Callose Synthase and Its Interaction with Phragmoplastin. The Plant Cell, 13(4), 755-768. doi:10.1105/tpc.13.4.755

Jacobs, A. K., Lipka, V., Burton, R. A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., & Fincher, G. B. (2003). An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. The Plant Cell, 15(11), 2503-2513. doi:10.1105/tpc.016097

Jacquard, C., Mazeyrat-Gourbeyre, F., Devaux, P., Boutilier, K., Baillieul, F., & Clément, C. (2008). Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta, 229(2), 393-402. doi:10.1007/s00425-008-0838-6

Jensen, W. A. (1968). Cotton embryogenesis: The zygote. Planta, 79(4), 346-366. doi:10.1007/bf00386917

Joosen, R., Cordewener, J., Supena, E. D. J., Vorst, O., Lammers, M., Maliepaard, C., … Boutilier, K. (2007). Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development. Plant Physiology, 144(1), 155-172. doi:10.1104/pp.107.098723

KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299

Ochatt, S., Pech, C., Grewal, R., Conreux, C., Lulsdorf, M., & Jacas, L. (2009). Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). Journal of Plant Physiology, 166(12), 1314-1328. doi:10.1016/j.jplph.2009.01.011

Park, E., Díaz-Moreno, S. M., Davis, D. J., Wilkop, T. E., Bulone, V., & Drakakaki, G. (2014). Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 165(3), 1019-1034. doi:10.1104/pp.114.241497

Parra-Vega, V., Corral-Martínez, P., Rivas-Sendra, A., & Seguí-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018

Paul, D. C., & Goff, C. W. (1973). Comparative effects of caffeine, its analogues and calcium deficiency on cytokinesis. Experimental Cell Research, 78(2), 399-413. doi:10.1016/0014-4827(73)90085-2

Pauls, K. P., Chan, J., Woronuk, G., Schulze, D., & Brazolot, J. (2006). When microspores decide to become embryos — cellular and molecular changesThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. Canadian Journal of Botany, 84(4), 668-678. doi:10.1139/b06-064

Reynolds, T. L. (1990). Interactions between calcium and auxin during pollen androgenesis in anther cultures of Solanum carolinense L. Plant Science, 72(1), 109-114. doi:10.1016/0168-9452(90)90192-q

Reynolds, T. L. (2000). Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of Triticum aestivum. Plant Science, 150(2), 201-207. doi:10.1016/s0168-9452(99)00187-9

Rivas-Sendra, A., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Dynamics of Calcium during In vitro Microspore Embryogenesis and In vivo Microspore Development in Brassica napus and Solanum melongena. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01177

Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4). doi:10.1007/s10681-017-1879-3

Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C., & Seguí-Simarro, J. M. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 122(3), 759-765. doi:10.1007/s11240-015-0791-6

Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J. M., & Goloubinoff, P. (2009). The Heat Shock Response in Moss Plants Is Regulated by Specific Calcium-Permeable Channels in the Plasma Membrane. The Plant Cell, 21(9), 2829-2843. doi:10.1105/tpc.108.065318

Samuels, A. L., & Staehelin, L. A. (1996). Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma, 195(1-4), 144-155. doi:10.1007/bf01279193

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019

Schl�pmann, H., Bacic, A., & Read, S. (1993). A novel callose synthase from pollen tubes of Nicotiana. Planta, 191(4). doi:10.1007/bf00195748

Shi, X., Sun, X., Zhang, Z., Feng, D., Zhang, Q., Han, L., … Lu, T. (2014). GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. Plant and Cell Physiology, 56(3), 497-509. doi:10.1093/pcp/pcu193

Slewinski, T. L., Baker, R. F., Stubert, A., & Braun, D. M. (2012). Tie-dyed2 Encodes a Callose Synthase That Functions in Vein Development and Affects Symplastic Trafficking within the Phloem of Maize Leaves. Plant Physiology, 160(3), 1540-1550. doi:10.1104/pp.112.202473

Sun, F., Fan, G., Hu, Q., Zhou, Y., Guan, M., Tong, C., … Wang, H. (2017). The high-quality genome ofBrassica napuscultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal, 92(3), 452-468. doi:10.1111/tpj.13669

Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., … Zuo, J. (2011). Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds. Plant Physiology, 156(3), 1577-1588. doi:10.1104/pp.111.175000

Töller, A., Brownfield, L., Neu, C., Twell, D., & Schulze-Lefert, P. (2008). Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. The Plant Journal, 54(5), 911-923. doi:10.1111/j.1365-313x.2008.03462.x

Verma, D. P. S. (2001). CYTOKINESIS ANDBUILDING OF THECELLPLATE INPLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 751-784. doi:10.1146/annurev.arplant.52.1.751

Verma, D. P. S., & Hong, Z. (2001). Plant Molecular Biology, 47(6), 693-701. doi:10.1023/a:1013679111111

Vithanage, H. I. M. V., Gleeson, P. A., & Clarke, A. E. (1980). The nature of callose produced during self-pollination inSecale cereale. Planta, 148(5), 498-509. doi:10.1007/bf00552666

Waldmann, T., Jeblick, W., & Kauss, H. (1988). Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells. Planta, 173(1), 88-95. doi:10.1007/bf00394492

WHITE, P. J. (2003). Calcium in Plants. Annals of Botany, 92(4), 487-511. doi:10.1093/aob/mcg164

Xie, B., Deng, Y., Kanaoka, M. M., Okada, K., & Hong, Z. (2012). Expression of Arabidopsis callose synthase 5 results in callose accumulation and cell wall permeability alteration. Plant Science, 183, 1-8. doi:10.1016/j.plantsci.2011.10.015

Ling You, X., Seon Yi, J., & Eui Choi, Y. (2006). Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma, 227(2-4), 105-112. doi:10.1007/s00709-006-0149-3

Yu, Y., Jiao, L., Fu, S., Yin, L., Zhang, Y., & Lu, J. (2016). Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. Phytopathology®, 106(1), 56-64. doi:10.1094/phyto-07-15-0166-r

Zhang, C., Guinel, F. C., & Moffatt, B. A. (2002). A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3. Protoplasma, 219(1-2), 59-71. doi:10.1007/s007090200006

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record