- -

Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rivas-Sendra, Alba es_ES
dc.contributor.author Corral Martínez, Patricia es_ES
dc.contributor.author Porcel, R. es_ES
dc.contributor.author Camacho-Fernández, Carolina es_ES
dc.contributor.author Calabuig-Serna, Antonio es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2020-11-24T04:31:40Z
dc.date.available 2020-11-24T04:31:40Z
dc.date.issued 2019-02-01 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155497
dc.description.abstract [EN] Microspore embryogenesis is an experimental morphogenic pathway with important applications in basic research and applied plant breeding, but its genetic, cellular, and molecular bases are poorly understood. We applied a multi-disciplinary approach using confocal and electron microscopy, detection of Ca2+, callose, and cellulose, treatments with caffeine, digitonin, and endosidin7, morphometry, qPCR, osmometry, and viability assays in order to study the dynamics of cell wall formation during embryogenesis induction in a high-response rapeseed (Brassica napus) line and two recalcitrant rapeseed and eggplant (Solanum melongena) lines. Formation of a callose-rich subintinal layer (SL) was common to microspore embryogenesis in the different genotypes. However, this process was directly related to embryogenic response, being greater in high-response genotypes. A link could be established between Ca2+ influx, abnormal callose/cellulose deposition, and the genotype-specific embryogenic competence. Callose deposition in inner walls and SLs are independent processes, regulated by different callose synthases. Viability and control of internal osmolality are also related to SL formation. In summary, we identified one of the causes of recalcitrance to embryogenesis induction: a reduced or absent protective SL. In responding genotypes, SLs are markers for changes in cell fate and serve as osmoprotective barriers to increase viability in imbalanced in vitro environments. Genotype-specific differences relate to different responses against abiotic (heat/osmotic) stresses. es_ES
dc.description.sponsorship Thanks are due to the Electron Microscopy Service of Universitat Politecnica de Valencia, Marisol Gascon (IBMCP Microscopy Service), Dr Kim Boutilier (WUR, Wageningen) for hosting ARS at her lab, and Dr Samantha Vernhettes (INRA Versailles) for kindly providing us with S4B. This work supported by grants AGL2014-55177-R and AGL2017-88135-R to JMSS from MINECO jointly funded by FEDER. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Androgenesis es_ES
dc.subject Brassica napus es_ES
dc.subject Calcium es_ES
dc.subject Cellulose es_ES
dc.subject Cell wall es_ES
dc.subject Doubled haploids es_ES
dc.subject Eggplant es_ES
dc.subject Rapeseed es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/ery458 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Rivas-Sendra, A.; Corral Martínez, P.; Porcel, R.; Camacho-Fernández, C.; Calabuig-Serna, A.; Seguí-Simarro, JM. (2019). Embryogenic competence of microspores is associated to their ability to form a callosic, osmoprotective subintinal layer. Journal of Experimental Botany. 70(4):1267-1281. https://doi.org/10.1093/jxb/ery458 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https:/doi.org/10.1093/jxb/ery458 es_ES
dc.description.upvformatpinicio 1267 es_ES
dc.description.upvformatpfin 1281 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 30715473 es_ES
dc.identifier.pmcid PMC6382338 es_ES
dc.relation.pasarela S\380106 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abramova, L. I. (2003). Russian Journal of Plant Physiology, 50(3), 324-329. doi:10.1023/a:1023866019102 es_ES
dc.description.references Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523 es_ES
dc.description.references Cordewener, J., Bergervoet, J., & Liu, C.-M. (2000). Changes in Protein Synthesis and Phosphorylation during Microspore Embryogenesis in Brassica napus. Journal of Plant Physiology, 156(2), 156-163. doi:10.1016/s0176-1617(00)80300-4 es_ES
dc.description.references Corral-Martínez, P., García-Fortea, E., Bernard, S., Driouich, A., & Seguí-Simarro, J. M. (2016). Ultrastructural Immunolocalization of Arabinogalactan Protein, Pectin and Hemicellulose Epitopes Through Anther Development inBrassica napus. Plant and Cell Physiology, 57(10), 2161-2174. doi:10.1093/pcp/pcw133 es_ES
dc.description.references Fortes, A. M., Testillano, P. S., Del Carmen Risueño, M., & Pais, M. S. (2002). Studies on callose and cutin during the expression of competence and determination for organogenic nodule formation from internodes of Humulus lupulus var. Nugget. Physiologia Plantarum, 116(1), 113-120. doi:10.1034/j.1399-3054.2002.1160114.x es_ES
dc.description.references Furch, A. C. U., Hafke, J. B., Schulz, A., & van Bel, A. J. E. (2007). Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. Journal of Experimental Botany, 58(11), 2827-2838. doi:10.1093/jxb/erm143 es_ES
dc.description.references Grewal, R. K., Lulsdorf, M., Croser, J., Ochatt, S., Vandenberg, A., & Warkentin, T. D. (2009). Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Reports, 28(8), 1289-1299. doi:10.1007/s00299-009-0731-1 es_ES
dc.description.references Hoekstra, S., van Bergen, S., van Brouwershaven, I. ., Schilperoort, R. ., & Wang, M. (1997). Androgenesis in Hordeum vulgare L.: Effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Science, 126(2), 211-218. doi:10.1016/s0168-9452(97)00096-4 es_ES
dc.description.references Hong, Z., Delauney, A. J., & Verma, D. P. S. (2001). A Cell Plate–Specific Callose Synthase and Its Interaction with Phragmoplastin. The Plant Cell, 13(4), 755-768. doi:10.1105/tpc.13.4.755 es_ES
dc.description.references Jacobs, A. K., Lipka, V., Burton, R. A., Panstruga, R., Strizhov, N., Schulze-Lefert, P., & Fincher, G. B. (2003). An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. The Plant Cell, 15(11), 2503-2513. doi:10.1105/tpc.016097 es_ES
dc.description.references Jacquard, C., Mazeyrat-Gourbeyre, F., Devaux, P., Boutilier, K., Baillieul, F., & Clément, C. (2008). Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta, 229(2), 393-402. doi:10.1007/s00425-008-0838-6 es_ES
dc.description.references Jensen, W. A. (1968). Cotton embryogenesis: The zygote. Planta, 79(4), 346-366. doi:10.1007/bf00386917 es_ES
dc.description.references Joosen, R., Cordewener, J., Supena, E. D. J., Vorst, O., Lammers, M., Maliepaard, C., … Boutilier, K. (2007). Combined Transcriptome and Proteome Analysis Identifies Pathways and Markers Associated with the Establishment of Rapeseed Microspore-Derived Embryo Development. Plant Physiology, 144(1), 155-172. doi:10.1104/pp.107.098723 es_ES
dc.description.references KAY, R., CHAN, A., DALY, M., & MCPHERSON, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299 es_ES
dc.description.references Ochatt, S., Pech, C., Grewal, R., Conreux, C., Lulsdorf, M., & Jacas, L. (2009). Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). Journal of Plant Physiology, 166(12), 1314-1328. doi:10.1016/j.jplph.2009.01.011 es_ES
dc.description.references Park, E., Díaz-Moreno, S. M., Davis, D. J., Wilkop, T. E., Bulone, V., & Drakakaki, G. (2014). Endosidin 7 Specifically Arrests Late Cytokinesis and Inhibits Callose Biosynthesis, Revealing Distinct Trafficking Events during Cell Plate Maturation. Plant Physiology, 165(3), 1019-1034. doi:10.1104/pp.114.241497 es_ES
dc.description.references Parra-Vega, V., Corral-Martínez, P., Rivas-Sendra, A., & Seguí-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018 es_ES
dc.description.references Paul, D. C., & Goff, C. W. (1973). Comparative effects of caffeine, its analogues and calcium deficiency on cytokinesis. Experimental Cell Research, 78(2), 399-413. doi:10.1016/0014-4827(73)90085-2 es_ES
dc.description.references Pauls, K. P., Chan, J., Woronuk, G., Schulze, D., & Brazolot, J. (2006). When microspores decide to become embryos — cellular and molecular changesThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. Canadian Journal of Botany, 84(4), 668-678. doi:10.1139/b06-064 es_ES
dc.description.references Reynolds, T. L. (1990). Interactions between calcium and auxin during pollen androgenesis in anther cultures of Solanum carolinense L. Plant Science, 72(1), 109-114. doi:10.1016/0168-9452(90)90192-q es_ES
dc.description.references Reynolds, T. L. (2000). Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of Triticum aestivum. Plant Science, 150(2), 201-207. doi:10.1016/s0168-9452(99)00187-9 es_ES
dc.description.references Rivas-Sendra, A., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Dynamics of Calcium during In vitro Microspore Embryogenesis and In vivo Microspore Development in Brassica napus and Solanum melongena. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01177 es_ES
dc.description.references Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4). doi:10.1007/s10681-017-1879-3 es_ES
dc.description.references Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C., & Seguí-Simarro, J. M. (2015). Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell, Tissue and Organ Culture (PCTOC), 122(3), 759-765. doi:10.1007/s11240-015-0791-6 es_ES
dc.description.references Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y. G., Maathuis, F. J. M., & Goloubinoff, P. (2009). The Heat Shock Response in Moss Plants Is Regulated by Specific Calcium-Permeable Channels in the Plasma Membrane. The Plant Cell, 21(9), 2829-2843. doi:10.1105/tpc.108.065318 es_ES
dc.description.references Samuels, A. L., & Staehelin, L. A. (1996). Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma, 195(1-4), 144-155. doi:10.1007/bf01279193 es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Schl�pmann, H., Bacic, A., & Read, S. (1993). A novel callose synthase from pollen tubes of Nicotiana. Planta, 191(4). doi:10.1007/bf00195748 es_ES
dc.description.references Shi, X., Sun, X., Zhang, Z., Feng, D., Zhang, Q., Han, L., … Lu, T. (2014). GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. Plant and Cell Physiology, 56(3), 497-509. doi:10.1093/pcp/pcu193 es_ES
dc.description.references Slewinski, T. L., Baker, R. F., Stubert, A., & Braun, D. M. (2012). Tie-dyed2 Encodes a Callose Synthase That Functions in Vein Development and Affects Symplastic Trafficking within the Phloem of Maize Leaves. Plant Physiology, 160(3), 1540-1550. doi:10.1104/pp.112.202473 es_ES
dc.description.references Sun, F., Fan, G., Hu, Q., Zhou, Y., Guan, M., Tong, C., … Wang, H. (2017). The high-quality genome ofBrassica napuscultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. The Plant Journal, 92(3), 452-468. doi:10.1111/tpj.13669 es_ES
dc.description.references Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., … Zuo, J. (2011). Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds. Plant Physiology, 156(3), 1577-1588. doi:10.1104/pp.111.175000 es_ES
dc.description.references Töller, A., Brownfield, L., Neu, C., Twell, D., & Schulze-Lefert, P. (2008). Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. The Plant Journal, 54(5), 911-923. doi:10.1111/j.1365-313x.2008.03462.x es_ES
dc.description.references Verma, D. P. S. (2001). CYTOKINESIS ANDBUILDING OF THECELLPLATE INPLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 751-784. doi:10.1146/annurev.arplant.52.1.751 es_ES
dc.description.references Verma, D. P. S., & Hong, Z. (2001). Plant Molecular Biology, 47(6), 693-701. doi:10.1023/a:1013679111111 es_ES
dc.description.references Vithanage, H. I. M. V., Gleeson, P. A., & Clarke, A. E. (1980). The nature of callose produced during self-pollination inSecale cereale. Planta, 148(5), 498-509. doi:10.1007/bf00552666 es_ES
dc.description.references Waldmann, T., Jeblick, W., & Kauss, H. (1988). Induced net Ca2+ uptake and callose biosynthesis in suspension-cultured plant cells. Planta, 173(1), 88-95. doi:10.1007/bf00394492 es_ES
dc.description.references WHITE, P. J. (2003). Calcium in Plants. Annals of Botany, 92(4), 487-511. doi:10.1093/aob/mcg164 es_ES
dc.description.references Xie, B., Deng, Y., Kanaoka, M. M., Okada, K., & Hong, Z. (2012). Expression of Arabidopsis callose synthase 5 results in callose accumulation and cell wall permeability alteration. Plant Science, 183, 1-8. doi:10.1016/j.plantsci.2011.10.015 es_ES
dc.description.references Ling You, X., Seon Yi, J., & Eui Choi, Y. (2006). Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma, 227(2-4), 105-112. doi:10.1007/s00709-006-0149-3 es_ES
dc.description.references Yu, Y., Jiao, L., Fu, S., Yin, L., Zhang, Y., & Lu, J. (2016). Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. Phytopathology®, 106(1), 56-64. doi:10.1094/phyto-07-15-0166-r es_ES
dc.description.references Zhang, C., Guinel, F. C., & Moffatt, B. A. (2002). A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3. Protoplasma, 219(1-2), 59-71. doi:10.1007/s007090200006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem