- -

A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe)

Show full item record

Salcedo-Abraira, P.; Santiago-Portillo, A.; Atienzar Corvillo, PE.; Bordet, P.; Salles, F.; Guillou, N.; Elkaim, E.... (2019). A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions. 48(26):9807-9817. https://doi.org/10.1039/c9dt00917e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155507

Files in this item

Item Metadata

Title: A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe)
Author: Salcedo-Abraira, Pablo Santiago-Portillo, Andrea Atienzar Corvillo, Pedro Enrique Bordet, Pierre Salles, Fabrice Guillou, Nathalie Elkaim, Erik García Gómez, Hermenegildo Navalón Oltra, Sergio Horcajada, Patricia
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Despite the higher efficiency, larger color range and faster stimulus response of polymeric electrochromic materials, their poor cyclability strongly hampers their application in optoelectronics. As an original strategy ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c9dt00917e
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c9dt00917e
Project ID:
info:eu-repo/grantAgreement/MECD//CAS14%2F00067/ES/CAS14%2F00067/
fBBVA/IN[17]_CBB_QUI_0197
MINECO/ENE2016-79608-C2-1-R
info:eu-repo/grantAgreement/MINECO//RYC-2014-16823/ES/RYC-2014-16823/
Thanks:
This work was supported by a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (IN[17]_CBB_QUI_0197). The work was also partially supported by IMDEA Energy and Raphuel project (ENE2016-79608-C2-1-R, ...[+]
Type: Artículo

References

P. M. S. Monk , R. J.Mortimer and D. R.Rosseinsky , Electrochromism: fundamentals and applications , VCH , 1995

Kondalkar, V. V., Kharade, R. R., Mali, S. S., Mane, R. M., Patil, P. B., Patil, P. S., … Bhosale, P. N. (2014). Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73, 290-295. doi:10.1016/j.spmi.2014.05.039

Patil, C. E., Tarwal, N. L., Jadhav, P. R., Shinde, P. S., Deshmukh, H. P., Karanjkar, M. M., … Patil, P. S. (2014). Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Current Applied Physics, 14(3), 389-395. doi:10.1016/j.cap.2013.12.014 [+]
P. M. S. Monk , R. J.Mortimer and D. R.Rosseinsky , Electrochromism: fundamentals and applications , VCH , 1995

Kondalkar, V. V., Kharade, R. R., Mali, S. S., Mane, R. M., Patil, P. B., Patil, P. S., … Bhosale, P. N. (2014). Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73, 290-295. doi:10.1016/j.spmi.2014.05.039

Patil, C. E., Tarwal, N. L., Jadhav, P. R., Shinde, P. S., Deshmukh, H. P., Karanjkar, M. M., … Patil, P. S. (2014). Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Current Applied Physics, 14(3), 389-395. doi:10.1016/j.cap.2013.12.014

Benoit, A., Paramasivam, I., Nah, Y.-C., Roy, P., & Schmuki, P. (2009). Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. Electrochemistry Communications, 11(4), 728-732. doi:10.1016/j.elecom.2009.01.024

Mortimer, R. J. (1991). Five Color Electrochromicity Using Prussian Blue and Nafion/Methyl Viologen Layered Films. Journal of The Electrochemical Society, 138(2), 633-634. doi:10.1149/1.2085647

Mortimer, R. J., Dyer, A. L., & Reynolds, J. R. (2006). Electrochromic organic and polymeric materials for display applications. Displays, 27(1), 2-18. doi:10.1016/j.displa.2005.03.003

Abidin, T., Zhang, Q., Wang, K.-L., & Liaw, D.-J. (2014). Recent advances in electrochromic polymers. Polymer, 55(21), 5293-5304. doi:10.1016/j.polymer.2014.08.046

Das, T. K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 51(14), 1487-1500. doi:10.1080/03602559.2012.710697

Bein, T., & Enzel, P. (1989). Encapsulation of Polypyrrole Chains in Zeolite Channels. Angewandte Chemie International Edition in English, 28(12), 1692-1694. doi:10.1002/anie.198916921

Wu, C.-G., & Bein, T. (1994). Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 264(5166), 1757-1759. doi:10.1126/science.264.5166.1757

Thomas, A., Goettmann, F., & Antonietti, M. (2008). Hard Templates for Soft Materials: Creating Nanostructured Organic Materials†. Chemistry of Materials, 20(3), 738-755. doi:10.1021/cm702126j

Uemura, T., Kadowaki, Y., Yanai, N., & Kitagawa, S. (2009). Template Synthesis of Porous Polypyrrole in 3D Coordination Nanochannels. Chemistry of Materials, 21(18), 4096-4098. doi:10.1021/cm901361m

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., … Yaghi, O. M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329(5990), 424-428. doi:10.1126/science.1192160

Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639

Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s

Ryder, M. R., & Tan, J.-C. (2014). Nanoporous metal organic framework materials for smart applications. Materials Science and Technology, 30(13), 1598-1612. doi:10.1179/1743284714y.0000000550

Wade, C. R., Li, M., & Dincă, M. (2013). Facile Deposition of Multicolored Electrochromic Metal-Organic Framework Thin Films. Angewandte Chemie International Edition, 52(50), 13377-13381. doi:10.1002/anie.201306162

Kung, C.-W., Wang, T. C., Mondloch, J. E., Fairen-Jimenez, D., Gardner, D. M., Bury, W., … Hupp, J. T. (2013). Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 25(24), 5012-5017. doi:10.1021/cm403726v

Xie, Y.-X., Zhao, W.-N., Li, G.-C., Liu, P.-F., & Han, L. (2015). A Naphthalenediimide-Based Metal–Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. Inorganic Chemistry, 55(2), 549-551. doi:10.1021/acs.inorgchem.5b02480

AlKaabi, K., Wade, C. R., & Dincă, M. (2016). Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem, 1(2), 264-272. doi:10.1016/j.chempr.2016.06.013

Mjejri, I., Doherty, C. M., Rubio-Martinez, M., Drisko, G. L., & Rougier, A. (2017). Double-Sided Electrochromic Device Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(46), 39930-39934. doi:10.1021/acsami.7b13647

Uemura, T., Uchida, N., Asano, A., Saeki, A., Seki, S., Tsujimoto, M., … Kitagawa, S. (2012). Highly Photoconducting π-Stacked Polymer Accommodated in Coordination Nanochannels. Journal of the American Chemical Society, 134(20), 8360-8363. doi:10.1021/ja301903x

Lu, C., Ben, T., Xu, S., & Qiu, S. (2014). Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film. Angewandte Chemie International Edition, 53(25), 6454-6458. doi:10.1002/anie.201402950

Kitao, T., Bracco, S., Comotti, A., Sozzani, P., Naito, M., Seki, S., … Kitagawa, S. (2015). Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 137(15), 5231-5238. doi:10.1021/jacs.5b02215

MacLean, M. W. A., Kitao, T., Suga, T., Mizuno, M., Seki, S., Uemura, T., & Kitagawa, S. (2015). Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie International Edition, 55(2), 708-713. doi:10.1002/anie.201510084

Le Ouay, B., Boudot, M., Kitao, T., Yanagida, T., Kitagawa, S., & Uemura, T. (2016). Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society, 138(32), 10088-10091. doi:10.1021/jacs.6b05552

Wang, T., Farajollahi, M., Henke, S., Zhu, T., Bajpe, S. R., Sun, S., … Smoukov, S. K. (2017). Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Materials Horizons, 4(1), 64-71. doi:10.1039/c6mh00230g

Kawahara, J., Ersman, P. A., Engquist, I., & Berggren, M. (2012). Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics, 13(3), 469-474. doi:10.1016/j.orgel.2011.12.007

Zainal, M. F., & Mohd, Y. (2015). Characterization of PEDOT Films for Electrochromic Applications. Polymer-Plastics Technology and Engineering, 54(3), 276-281. doi:10.1080/03602559.2014.977422

Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b

Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027

Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b

Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230

Xu, J. ., Chan, H. S. ., Ng, S. ., & Chung, T. . (2002). Polymers synthesized from (3-alkylthio)thiophenes by the FeCl3 oxidation method. Synthetic Metals, 132(1), 63-69. doi:10.1016/s0379-6779(02)00214-x

Domagala, W., Pilawa, B., & Lapkowski, M. (2008). Quantitative in-situ EPR spectroelectrochemical studies of doping processes in poly(3,4-alkylenedioxythiophene)s. Electrochimica Acta, 53(13), 4580-4590. doi:10.1016/j.electacta.2007.12.068

Caspar, J. V., Ramamurthy, V., & Corbin, D. R. (1991). Modification of photochemical reactivity by zeolites. Preparation and spectroscopic characterization of polarons and bipolarons of thiophene oligomers within the channels of pentasil zeolites: the evolution of organic radical ions into conducting polymers. Journal of the American Chemical Society, 113(2), 600-610. doi:10.1021/ja00002a031

Worfolk, B. J., Andrews, S. C., Park, S., Reinspach, J., Liu, N., Toney, M. F., … Bao, Z. (2015). Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences, 112(46), 14138-14143. doi:10.1073/pnas.1509958112

Liu, C., Jiang, F., Huang, M., Yue, R., Lu, B., Xu, J., & Liu, G. (2011). Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films. Journal of Electronic Materials, 40(5), 648-651. doi:10.1007/s11664-010-1494-8

Bach, R. D., Shobe, D. S., Schlegel, H. B., & Nagel, C. J. (1996). Thermochemistry of Iron Chlorides and Their Positive and Negative Ions. The Journal of Physical Chemistry, 100(21), 8770-8776. doi:10.1021/jp953687w

Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g

Aguilera-Sigalat, J., & Bradshaw, D. (2016). Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 307, 267-291. doi:10.1016/j.ccr.2015.08.004

Semino, R., Moreton, J. C., Ramsahye, N. A., Cohen, S. M., & Maurin, G. (2018). Understanding the origins of metal–organic framework/polymer compatibility. Chemical Science, 9(2), 315-324. doi:10.1039/c7sc04152g

Rojas, S., Colinet, I., Cunha, D., Hidalgo, T., Salles, F., Serre, C., … Horcajada, P. (2018). Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 3(3), 2994-3003. doi:10.1021/acsomega.8b00185

Corradi, R., & Armes, S. P. (1997). Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 84(1-3), 453-454. doi:10.1016/s0379-6779(97)80828-4

Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g

Juhás, P., Davis, T., Farrow, C. L., & Billinge, S. J. L. (2013). PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. Journal of Applied Crystallography, 46(2), 560-566. doi:10.1107/s0021889813005190

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Rappe, A. K., & Goddard, W. A. (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8), 3358-3363. doi:10.1021/j100161a070

Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040

Álvaro, M., Cabeza, J. F., Fabuel, D., García, H., Guijarro, E., & Martínez de Juan, J. L. (2006). Electrical Conductivity of Zeolite Films:  Influence of Charge Balancing Cations and Crystal Structure. Chemistry of Materials, 18(1), 26-33. doi:10.1021/cm050467e

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record