- -

A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Salcedo-Abraira, Pablo es_ES
dc.contributor.author Santiago-Portillo, Andrea es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author Bordet, Pierre es_ES
dc.contributor.author Salles, Fabrice es_ES
dc.contributor.author Guillou, Nathalie es_ES
dc.contributor.author Elkaim, Erik es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Horcajada, Patricia es_ES
dc.date.accessioned 2020-11-24T04:32:06Z
dc.date.available 2020-11-24T04:32:06Z
dc.date.issued 2019-07-14 es_ES
dc.identifier.issn 1477-9226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155507
dc.description.abstract [EN] Despite the higher efficiency, larger color range and faster stimulus response of polymeric electrochromic materials, their poor cyclability strongly hampers their application in optoelectronics. As an original strategy to stabilize and further nanostructure these polymers, herein an efficient encapsulation and in situ polymerization inside highly porous metal-organic frameworks (MOFs) is reported. In particular, the successful accommodation of poly(3,4-ethylendioxythiophene) (PEDOT) and its partially oxidized polarons inside the mesopores of the nontoxic iron trimesate MIL-100(Fe) is convincingly proved by a large panel of experimental techniques. Remarkably, the polymer-MOF interaction occurring for entrapped PEDOT within the pores (deeply assessed by experimental and simulation methods) might be responsible for the enhanced electrical conductivity of the resulting PEDOT@MIL-100(Fe) composite when compared to the insulating MIL-100(Fe) and the conductive free PEDOT. Furthermore, it was possible to observe the electrochromic properties of the PEDOT@MIL-100(Fe) composite, achieving an improved stability and good cyclability as a consequence of the effective protection by the MOF matrix. es_ES
dc.description.sponsorship This work was supported by a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (IN[17]_CBB_QUI_0197). The work was also partially supported by IMDEA Energy and Raphuel project (ENE2016-79608-C2-1-R, MINECOAEI/FEDER, UE). PH acknowledges the Spanish Ramon y Cajal Programme (grant agreement no. 2014-16823). S. N. thanks the Spanish Ministerio de Educacion, Cultura y Deporte for Jose Castillejo mobility programme (CAS14/00067) and financial support by Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016). We also thank the synchrotron Soleil for providing access to the Cristal beamline. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9dt00917e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS14%2F00067/ES/CAS14%2F00067/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/fBBVA//IN[17]_CBB_QUI_0197/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-79608-C2-1-R/ES/FOTOCONVERSION DE CO2 A COMBUSTIBLES SOLARES UTILIZADO MATERIALES MULTIFUNCIONALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2014-16823/ES/RYC-2014-16823/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Salcedo-Abraira, P.; Santiago-Portillo, A.; Atienzar Corvillo, PE.; Bordet, P.; Salles, F.; Guillou, N.; Elkaim, E.... (2019). A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions. 48(26):9807-9817. https://doi.org/10.1039/c9dt00917e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9dt00917e es_ES
dc.description.upvformatpinicio 9807 es_ES
dc.description.upvformatpfin 9817 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 26 es_ES
dc.identifier.pmid 31089630 es_ES
dc.relation.pasarela S\407138 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Fundación IMDEA Energía es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references P. M. S. Monk , R. J.Mortimer and D. R.Rosseinsky , Electrochromism: fundamentals and applications , VCH , 1995 es_ES
dc.description.references Kondalkar, V. V., Kharade, R. R., Mali, S. S., Mane, R. M., Patil, P. B., Patil, P. S., … Bhosale, P. N. (2014). Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73, 290-295. doi:10.1016/j.spmi.2014.05.039 es_ES
dc.description.references Patil, C. E., Tarwal, N. L., Jadhav, P. R., Shinde, P. S., Deshmukh, H. P., Karanjkar, M. M., … Patil, P. S. (2014). Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Current Applied Physics, 14(3), 389-395. doi:10.1016/j.cap.2013.12.014 es_ES
dc.description.references Benoit, A., Paramasivam, I., Nah, Y.-C., Roy, P., & Schmuki, P. (2009). Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. Electrochemistry Communications, 11(4), 728-732. doi:10.1016/j.elecom.2009.01.024 es_ES
dc.description.references Mortimer, R. J. (1991). Five Color Electrochromicity Using Prussian Blue and Nafion/Methyl Viologen Layered Films. Journal of The Electrochemical Society, 138(2), 633-634. doi:10.1149/1.2085647 es_ES
dc.description.references Mortimer, R. J., Dyer, A. L., & Reynolds, J. R. (2006). Electrochromic organic and polymeric materials for display applications. Displays, 27(1), 2-18. doi:10.1016/j.displa.2005.03.003 es_ES
dc.description.references Abidin, T., Zhang, Q., Wang, K.-L., & Liaw, D.-J. (2014). Recent advances in electrochromic polymers. Polymer, 55(21), 5293-5304. doi:10.1016/j.polymer.2014.08.046 es_ES
dc.description.references Das, T. K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 51(14), 1487-1500. doi:10.1080/03602559.2012.710697 es_ES
dc.description.references Bein, T., & Enzel, P. (1989). Encapsulation of Polypyrrole Chains in Zeolite Channels. Angewandte Chemie International Edition in English, 28(12), 1692-1694. doi:10.1002/anie.198916921 es_ES
dc.description.references Wu, C.-G., & Bein, T. (1994). Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 264(5166), 1757-1759. doi:10.1126/science.264.5166.1757 es_ES
dc.description.references Thomas, A., Goettmann, F., & Antonietti, M. (2008). Hard Templates for Soft Materials: Creating Nanostructured Organic Materials†. Chemistry of Materials, 20(3), 738-755. doi:10.1021/cm702126j es_ES
dc.description.references Uemura, T., Kadowaki, Y., Yanai, N., & Kitagawa, S. (2009). Template Synthesis of Porous Polypyrrole in 3D Coordination Nanochannels. Chemistry of Materials, 21(18), 4096-4098. doi:10.1021/cm901361m es_ES
dc.description.references Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., … Yaghi, O. M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329(5990), 424-428. doi:10.1126/science.1192160 es_ES
dc.description.references Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639 es_ES
dc.description.references Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s es_ES
dc.description.references Ryder, M. R., & Tan, J.-C. (2014). Nanoporous metal organic framework materials for smart applications. Materials Science and Technology, 30(13), 1598-1612. doi:10.1179/1743284714y.0000000550 es_ES
dc.description.references Wade, C. R., Li, M., & Dincă, M. (2013). Facile Deposition of Multicolored Electrochromic Metal-Organic Framework Thin Films. Angewandte Chemie International Edition, 52(50), 13377-13381. doi:10.1002/anie.201306162 es_ES
dc.description.references Kung, C.-W., Wang, T. C., Mondloch, J. E., Fairen-Jimenez, D., Gardner, D. M., Bury, W., … Hupp, J. T. (2013). Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 25(24), 5012-5017. doi:10.1021/cm403726v es_ES
dc.description.references Xie, Y.-X., Zhao, W.-N., Li, G.-C., Liu, P.-F., & Han, L. (2015). A Naphthalenediimide-Based Metal–Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. Inorganic Chemistry, 55(2), 549-551. doi:10.1021/acs.inorgchem.5b02480 es_ES
dc.description.references AlKaabi, K., Wade, C. R., & Dincă, M. (2016). Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem, 1(2), 264-272. doi:10.1016/j.chempr.2016.06.013 es_ES
dc.description.references Mjejri, I., Doherty, C. M., Rubio-Martinez, M., Drisko, G. L., & Rougier, A. (2017). Double-Sided Electrochromic Device Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(46), 39930-39934. doi:10.1021/acsami.7b13647 es_ES
dc.description.references Uemura, T., Uchida, N., Asano, A., Saeki, A., Seki, S., Tsujimoto, M., … Kitagawa, S. (2012). Highly Photoconducting π-Stacked Polymer Accommodated in Coordination Nanochannels. Journal of the American Chemical Society, 134(20), 8360-8363. doi:10.1021/ja301903x es_ES
dc.description.references Lu, C., Ben, T., Xu, S., & Qiu, S. (2014). Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film. Angewandte Chemie International Edition, 53(25), 6454-6458. doi:10.1002/anie.201402950 es_ES
dc.description.references Kitao, T., Bracco, S., Comotti, A., Sozzani, P., Naito, M., Seki, S., … Kitagawa, S. (2015). Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 137(15), 5231-5238. doi:10.1021/jacs.5b02215 es_ES
dc.description.references MacLean, M. W. A., Kitao, T., Suga, T., Mizuno, M., Seki, S., Uemura, T., & Kitagawa, S. (2015). Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie International Edition, 55(2), 708-713. doi:10.1002/anie.201510084 es_ES
dc.description.references Le Ouay, B., Boudot, M., Kitao, T., Yanagida, T., Kitagawa, S., & Uemura, T. (2016). Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society, 138(32), 10088-10091. doi:10.1021/jacs.6b05552 es_ES
dc.description.references Wang, T., Farajollahi, M., Henke, S., Zhu, T., Bajpe, S. R., Sun, S., … Smoukov, S. K. (2017). Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Materials Horizons, 4(1), 64-71. doi:10.1039/c6mh00230g es_ES
dc.description.references Kawahara, J., Ersman, P. A., Engquist, I., & Berggren, M. (2012). Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics, 13(3), 469-474. doi:10.1016/j.orgel.2011.12.007 es_ES
dc.description.references Zainal, M. F., & Mohd, Y. (2015). Characterization of PEDOT Films for Electrochromic Applications. Polymer-Plastics Technology and Engineering, 54(3), 276-281. doi:10.1080/03602559.2014.977422 es_ES
dc.description.references Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b es_ES
dc.description.references Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b es_ES
dc.description.references Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 es_ES
dc.description.references Xu, J. ., Chan, H. S. ., Ng, S. ., & Chung, T. . (2002). Polymers synthesized from (3-alkylthio)thiophenes by the FeCl3 oxidation method. Synthetic Metals, 132(1), 63-69. doi:10.1016/s0379-6779(02)00214-x es_ES
dc.description.references Domagala, W., Pilawa, B., & Lapkowski, M. (2008). Quantitative in-situ EPR spectroelectrochemical studies of doping processes in poly(3,4-alkylenedioxythiophene)s. Electrochimica Acta, 53(13), 4580-4590. doi:10.1016/j.electacta.2007.12.068 es_ES
dc.description.references Caspar, J. V., Ramamurthy, V., & Corbin, D. R. (1991). Modification of photochemical reactivity by zeolites. Preparation and spectroscopic characterization of polarons and bipolarons of thiophene oligomers within the channels of pentasil zeolites: the evolution of organic radical ions into conducting polymers. Journal of the American Chemical Society, 113(2), 600-610. doi:10.1021/ja00002a031 es_ES
dc.description.references Worfolk, B. J., Andrews, S. C., Park, S., Reinspach, J., Liu, N., Toney, M. F., … Bao, Z. (2015). Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences, 112(46), 14138-14143. doi:10.1073/pnas.1509958112 es_ES
dc.description.references Liu, C., Jiang, F., Huang, M., Yue, R., Lu, B., Xu, J., & Liu, G. (2011). Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films. Journal of Electronic Materials, 40(5), 648-651. doi:10.1007/s11664-010-1494-8 es_ES
dc.description.references Bach, R. D., Shobe, D. S., Schlegel, H. B., & Nagel, C. J. (1996). Thermochemistry of Iron Chlorides and Their Positive and Negative Ions. The Journal of Physical Chemistry, 100(21), 8770-8776. doi:10.1021/jp953687w es_ES
dc.description.references Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g es_ES
dc.description.references Aguilera-Sigalat, J., & Bradshaw, D. (2016). Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 307, 267-291. doi:10.1016/j.ccr.2015.08.004 es_ES
dc.description.references Semino, R., Moreton, J. C., Ramsahye, N. A., Cohen, S. M., & Maurin, G. (2018). Understanding the origins of metal–organic framework/polymer compatibility. Chemical Science, 9(2), 315-324. doi:10.1039/c7sc04152g es_ES
dc.description.references Rojas, S., Colinet, I., Cunha, D., Hidalgo, T., Salles, F., Serre, C., … Horcajada, P. (2018). Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 3(3), 2994-3003. doi:10.1021/acsomega.8b00185 es_ES
dc.description.references Corradi, R., & Armes, S. P. (1997). Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 84(1-3), 453-454. doi:10.1016/s0379-6779(97)80828-4 es_ES
dc.description.references Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g es_ES
dc.description.references Juhás, P., Davis, T., Farrow, C. L., & Billinge, S. J. L. (2013). PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. Journal of Applied Crystallography, 46(2), 560-566. doi:10.1107/s0021889813005190 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Rappe, A. K., & Goddard, W. A. (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8), 3358-3363. doi:10.1021/j100161a070 es_ES
dc.description.references Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040 es_ES
dc.description.references Álvaro, M., Cabeza, J. F., Fabuel, D., García, H., Guijarro, E., & Martínez de Juan, J. L. (2006). Electrical Conductivity of Zeolite Films:  Influence of Charge Balancing Cations and Crystal Structure. Chemistry of Materials, 18(1), 26-33. doi:10.1021/cm050467e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem