Mostrar el registro sencillo del ítem
dc.contributor.author | Salcedo-Abraira, Pablo | es_ES |
dc.contributor.author | Santiago-Portillo, Andrea | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | Bordet, Pierre | es_ES |
dc.contributor.author | Salles, Fabrice | es_ES |
dc.contributor.author | Guillou, Nathalie | es_ES |
dc.contributor.author | Elkaim, Erik | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Horcajada, Patricia | es_ES |
dc.date.accessioned | 2020-11-24T04:32:06Z | |
dc.date.available | 2020-11-24T04:32:06Z | |
dc.date.issued | 2019-07-14 | es_ES |
dc.identifier.issn | 1477-9226 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155507 | |
dc.description.abstract | [EN] Despite the higher efficiency, larger color range and faster stimulus response of polymeric electrochromic materials, their poor cyclability strongly hampers their application in optoelectronics. As an original strategy to stabilize and further nanostructure these polymers, herein an efficient encapsulation and in situ polymerization inside highly porous metal-organic frameworks (MOFs) is reported. In particular, the successful accommodation of poly(3,4-ethylendioxythiophene) (PEDOT) and its partially oxidized polarons inside the mesopores of the nontoxic iron trimesate MIL-100(Fe) is convincingly proved by a large panel of experimental techniques. Remarkably, the polymer-MOF interaction occurring for entrapped PEDOT within the pores (deeply assessed by experimental and simulation methods) might be responsible for the enhanced electrical conductivity of the resulting PEDOT@MIL-100(Fe) composite when compared to the insulating MIL-100(Fe) and the conductive free PEDOT. Furthermore, it was possible to observe the electrochromic properties of the PEDOT@MIL-100(Fe) composite, achieving an improved stability and good cyclability as a consequence of the effective protection by the MOF matrix. | es_ES |
dc.description.sponsorship | This work was supported by a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (IN[17]_CBB_QUI_0197). The work was also partially supported by IMDEA Energy and Raphuel project (ENE2016-79608-C2-1-R, MINECOAEI/FEDER, UE). PH acknowledges the Spanish Ramon y Cajal Programme (grant agreement no. 2014-16823). S. N. thanks the Spanish Ministerio de Educacion, Cultura y Deporte for Jose Castillejo mobility programme (CAS14/00067) and financial support by Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016). We also thank the synchrotron Soleil for providing access to the Cristal beamline. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Dalton Transactions | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9dt00917e | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//CAS14%2F00067/ES/CAS14%2F00067/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/fBBVA//IN[17]_CBB_QUI_0197/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-79608-C2-1-R/ES/FOTOCONVERSION DE CO2 A COMBUSTIBLES SOLARES UTILIZADO MATERIALES MULTIFUNCIONALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2014-16823/ES/RYC-2014-16823/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Salcedo-Abraira, P.; Santiago-Portillo, A.; Atienzar Corvillo, PE.; Bordet, P.; Salles, F.; Guillou, N.; Elkaim, E.... (2019). A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions. 48(26):9807-9817. https://doi.org/10.1039/c9dt00917e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9dt00917e | es_ES |
dc.description.upvformatpinicio | 9807 | es_ES |
dc.description.upvformatpfin | 9817 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 26 | es_ES |
dc.identifier.pmid | 31089630 | es_ES |
dc.relation.pasarela | S\407138 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Fundación IMDEA Energía | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | P. M. S. Monk , R. J.Mortimer and D. R.Rosseinsky , Electrochromism: fundamentals and applications , VCH , 1995 | es_ES |
dc.description.references | Kondalkar, V. V., Kharade, R. R., Mali, S. S., Mane, R. M., Patil, P. B., Patil, P. S., … Bhosale, P. N. (2014). Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures, 73, 290-295. doi:10.1016/j.spmi.2014.05.039 | es_ES |
dc.description.references | Patil, C. E., Tarwal, N. L., Jadhav, P. R., Shinde, P. S., Deshmukh, H. P., Karanjkar, M. M., … Patil, P. S. (2014). Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Current Applied Physics, 14(3), 389-395. doi:10.1016/j.cap.2013.12.014 | es_ES |
dc.description.references | Benoit, A., Paramasivam, I., Nah, Y.-C., Roy, P., & Schmuki, P. (2009). Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. Electrochemistry Communications, 11(4), 728-732. doi:10.1016/j.elecom.2009.01.024 | es_ES |
dc.description.references | Mortimer, R. J. (1991). Five Color Electrochromicity Using Prussian Blue and Nafion/Methyl Viologen Layered Films. Journal of The Electrochemical Society, 138(2), 633-634. doi:10.1149/1.2085647 | es_ES |
dc.description.references | Mortimer, R. J., Dyer, A. L., & Reynolds, J. R. (2006). Electrochromic organic and polymeric materials for display applications. Displays, 27(1), 2-18. doi:10.1016/j.displa.2005.03.003 | es_ES |
dc.description.references | Abidin, T., Zhang, Q., Wang, K.-L., & Liaw, D.-J. (2014). Recent advances in electrochromic polymers. Polymer, 55(21), 5293-5304. doi:10.1016/j.polymer.2014.08.046 | es_ES |
dc.description.references | Das, T. K., & Prusty, S. (2012). Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 51(14), 1487-1500. doi:10.1080/03602559.2012.710697 | es_ES |
dc.description.references | Bein, T., & Enzel, P. (1989). Encapsulation of Polypyrrole Chains in Zeolite Channels. Angewandte Chemie International Edition in English, 28(12), 1692-1694. doi:10.1002/anie.198916921 | es_ES |
dc.description.references | Wu, C.-G., & Bein, T. (1994). Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science, 264(5166), 1757-1759. doi:10.1126/science.264.5166.1757 | es_ES |
dc.description.references | Thomas, A., Goettmann, F., & Antonietti, M. (2008). Hard Templates for Soft Materials: Creating Nanostructured Organic Materials†. Chemistry of Materials, 20(3), 738-755. doi:10.1021/cm702126j | es_ES |
dc.description.references | Uemura, T., Kadowaki, Y., Yanai, N., & Kitagawa, S. (2009). Template Synthesis of Porous Polypyrrole in 3D Coordination Nanochannels. Chemistry of Materials, 21(18), 4096-4098. doi:10.1021/cm901361m | es_ES |
dc.description.references | Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 | es_ES |
dc.description.references | Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., … Yaghi, O. M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329(5990), 424-428. doi:10.1126/science.1192160 | es_ES |
dc.description.references | Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639 | es_ES |
dc.description.references | Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s | es_ES |
dc.description.references | Ryder, M. R., & Tan, J.-C. (2014). Nanoporous metal organic framework materials for smart applications. Materials Science and Technology, 30(13), 1598-1612. doi:10.1179/1743284714y.0000000550 | es_ES |
dc.description.references | Wade, C. R., Li, M., & Dincă, M. (2013). Facile Deposition of Multicolored Electrochromic Metal-Organic Framework Thin Films. Angewandte Chemie International Edition, 52(50), 13377-13381. doi:10.1002/anie.201306162 | es_ES |
dc.description.references | Kung, C.-W., Wang, T. C., Mondloch, J. E., Fairen-Jimenez, D., Gardner, D. M., Bury, W., … Hupp, J. T. (2013). Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 25(24), 5012-5017. doi:10.1021/cm403726v | es_ES |
dc.description.references | Xie, Y.-X., Zhao, W.-N., Li, G.-C., Liu, P.-F., & Han, L. (2015). A Naphthalenediimide-Based Metal–Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. Inorganic Chemistry, 55(2), 549-551. doi:10.1021/acs.inorgchem.5b02480 | es_ES |
dc.description.references | AlKaabi, K., Wade, C. R., & Dincă, M. (2016). Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem, 1(2), 264-272. doi:10.1016/j.chempr.2016.06.013 | es_ES |
dc.description.references | Mjejri, I., Doherty, C. M., Rubio-Martinez, M., Drisko, G. L., & Rougier, A. (2017). Double-Sided Electrochromic Device Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(46), 39930-39934. doi:10.1021/acsami.7b13647 | es_ES |
dc.description.references | Uemura, T., Uchida, N., Asano, A., Saeki, A., Seki, S., Tsujimoto, M., … Kitagawa, S. (2012). Highly Photoconducting π-Stacked Polymer Accommodated in Coordination Nanochannels. Journal of the American Chemical Society, 134(20), 8360-8363. doi:10.1021/ja301903x | es_ES |
dc.description.references | Lu, C., Ben, T., Xu, S., & Qiu, S. (2014). Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film. Angewandte Chemie International Edition, 53(25), 6454-6458. doi:10.1002/anie.201402950 | es_ES |
dc.description.references | Kitao, T., Bracco, S., Comotti, A., Sozzani, P., Naito, M., Seki, S., … Kitagawa, S. (2015). Confinement of Single Polysilane Chains in Coordination Nanospaces. Journal of the American Chemical Society, 137(15), 5231-5238. doi:10.1021/jacs.5b02215 | es_ES |
dc.description.references | MacLean, M. W. A., Kitao, T., Suga, T., Mizuno, M., Seki, S., Uemura, T., & Kitagawa, S. (2015). Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie International Edition, 55(2), 708-713. doi:10.1002/anie.201510084 | es_ES |
dc.description.references | Le Ouay, B., Boudot, M., Kitao, T., Yanagida, T., Kitagawa, S., & Uemura, T. (2016). Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. Journal of the American Chemical Society, 138(32), 10088-10091. doi:10.1021/jacs.6b05552 | es_ES |
dc.description.references | Wang, T., Farajollahi, M., Henke, S., Zhu, T., Bajpe, S. R., Sun, S., … Smoukov, S. K. (2017). Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF. Materials Horizons, 4(1), 64-71. doi:10.1039/c6mh00230g | es_ES |
dc.description.references | Kawahara, J., Ersman, P. A., Engquist, I., & Berggren, M. (2012). Improving the color switch contrast in PEDOT:PSS-based electrochromic displays. Organic Electronics, 13(3), 469-474. doi:10.1016/j.orgel.2011.12.007 | es_ES |
dc.description.references | Zainal, M. F., & Mohd, Y. (2015). Characterization of PEDOT Films for Electrochromic Applications. Polymer-Plastics Technology and Engineering, 54(3), 276-281. doi:10.1080/03602559.2014.977422 | es_ES |
dc.description.references | Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b | es_ES |
dc.description.references | Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b | es_ES |
dc.description.references | Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 | es_ES |
dc.description.references | Xu, J. ., Chan, H. S. ., Ng, S. ., & Chung, T. . (2002). Polymers synthesized from (3-alkylthio)thiophenes by the FeCl3 oxidation method. Synthetic Metals, 132(1), 63-69. doi:10.1016/s0379-6779(02)00214-x | es_ES |
dc.description.references | Domagala, W., Pilawa, B., & Lapkowski, M. (2008). Quantitative in-situ EPR spectroelectrochemical studies of doping processes in poly(3,4-alkylenedioxythiophene)s. Electrochimica Acta, 53(13), 4580-4590. doi:10.1016/j.electacta.2007.12.068 | es_ES |
dc.description.references | Caspar, J. V., Ramamurthy, V., & Corbin, D. R. (1991). Modification of photochemical reactivity by zeolites. Preparation and spectroscopic characterization of polarons and bipolarons of thiophene oligomers within the channels of pentasil zeolites: the evolution of organic radical ions into conducting polymers. Journal of the American Chemical Society, 113(2), 600-610. doi:10.1021/ja00002a031 | es_ES |
dc.description.references | Worfolk, B. J., Andrews, S. C., Park, S., Reinspach, J., Liu, N., Toney, M. F., … Bao, Z. (2015). Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences, 112(46), 14138-14143. doi:10.1073/pnas.1509958112 | es_ES |
dc.description.references | Liu, C., Jiang, F., Huang, M., Yue, R., Lu, B., Xu, J., & Liu, G. (2011). Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films. Journal of Electronic Materials, 40(5), 648-651. doi:10.1007/s11664-010-1494-8 | es_ES |
dc.description.references | Bach, R. D., Shobe, D. S., Schlegel, H. B., & Nagel, C. J. (1996). Thermochemistry of Iron Chlorides and Their Positive and Negative Ions. The Journal of Physical Chemistry, 100(21), 8770-8776. doi:10.1021/jp953687w | es_ES |
dc.description.references | Majewski, M. B., Howarth, A. J., Li, P., Wasielewski, M. R., Hupp, J. T., & Farha, O. K. (2017). Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 19(29), 4082-4091. doi:10.1039/c7ce00022g | es_ES |
dc.description.references | Aguilera-Sigalat, J., & Bradshaw, D. (2016). Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 307, 267-291. doi:10.1016/j.ccr.2015.08.004 | es_ES |
dc.description.references | Semino, R., Moreton, J. C., Ramsahye, N. A., Cohen, S. M., & Maurin, G. (2018). Understanding the origins of metal–organic framework/polymer compatibility. Chemical Science, 9(2), 315-324. doi:10.1039/c7sc04152g | es_ES |
dc.description.references | Rojas, S., Colinet, I., Cunha, D., Hidalgo, T., Salles, F., Serre, C., … Horcajada, P. (2018). Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 3(3), 2994-3003. doi:10.1021/acsomega.8b00185 | es_ES |
dc.description.references | Corradi, R., & Armes, S. P. (1997). Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 84(1-3), 453-454. doi:10.1016/s0379-6779(97)80828-4 | es_ES |
dc.description.references | Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g | es_ES |
dc.description.references | Juhás, P., Davis, T., Farrow, C. L., & Billinge, S. J. L. (2013). PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. Journal of Applied Crystallography, 46(2), 560-566. doi:10.1107/s0021889813005190 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Rappe, A. K., & Goddard, W. A. (1991). Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8), 3358-3363. doi:10.1021/j100161a070 | es_ES |
dc.description.references | Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040 | es_ES |
dc.description.references | Álvaro, M., Cabeza, J. F., Fabuel, D., García, H., Guijarro, E., & Martínez de Juan, J. L. (2006). Electrical Conductivity of Zeolite Films: Influence of Charge Balancing Cations and Crystal Structure. Chemistry of Materials, 18(1), 26-33. doi:10.1021/cm050467e | es_ES |