- -

Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mello, Ronaldo E. es_ES
dc.contributor.author Fontana, Alessia es_ES
dc.contributor.author Mulet Pons, Antonio es_ES
dc.contributor.author Correa, J.L.G es_ES
dc.contributor.author Carcel, J. A. es_ES
dc.date.accessioned 2020-11-26T04:32:11Z
dc.date.available 2020-11-26T04:32:11Z
dc.date.issued 2020-01-02 es_ES
dc.identifier.issn 0737-3937 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155856
dc.description This is an Author's Accepted Manuscript of an article published in Ronaldo E. Mello, Alessia Fontana, Antonio Mulet, Jefferson Luiz, G. Correa & Juan A. Cárcel (2020) Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature, Drying Technology, 38:1-2, 259-267, DOI: 10.1080/07373937.2019.1645685 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/07373937.2019.1645685 es_ES
dc.description.abstract [EN] Atmospheric freeze-drying (AFD) at -10 degrees C and moderate temperature convective drying (MTD) at 50 degrees C without and with ultrasound application (20.5 kW/m(3)) were carried out. Alcohol insoluble residue (AIR) and its swelling capacity (SC), water retention capacity (WRC) and fat retention capacity (FRC) were measured in the dried product. Ultrasound significantly shortened the drying time in both processes, the intensification effect being more significant in atmospheric freeze-drying (57% and 27% reduction in atmospheric freeze-drying and convective drying, respectively). As regards AIR and WRC, no effect was observed of either the drying temperature or ultrasound application. On the contrary, SC was significantly lower in AFD samples. The FRC of MTD samples was similar to that of the fresh ones and higher than the values obtained for atmospheric freeze-dried samples. Therefore, convective drying at moderate temperature preserved the AIR properties better than atmospheric freeze-drying. es_ES
dc.description.sponsorship The authors acknowledge the financial support of INIA-ERDF through project RTA2015-00060-C04-02. We are also grateful for the economic support of the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (Capes)- Finance Code 001, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa de Minas Gerais (FAPEMIG). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Drying Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject By-product es_ES
dc.subject Process intensification es_ES
dc.subject Fiber es_ES
dc.subject Alcohol insoluble residue es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/07373937.2019.1645685 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Mello, RE.; Fontana, A.; Mulet Pons, A.; Correa, J.; Carcel, JA. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology. 38(1-2):259-267. https://doi.org/10.1080/07373937.2019.1645685 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/07373937.2019.1645685 es_ES
dc.description.upvformatpinicio 259 es_ES
dc.description.upvformatpfin 267 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\398948 es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de Minas Gerais es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Freire, F. B., Atxutegi, A., Freire, F. B., Freire, J. T., Aguado, R., & Olazar, M. (2016). An adaptive lumped parameter cascade model for orange juice solid waste drying in spouted bed. Drying Technology, 35(5), 577-584. doi:10.1080/07373937.2016.1190937 es_ES
dc.description.references Tasirin, S. M., Puspasari, I., Sahalan, A. Z., Mokhtar, M., Ghani, M. K. A., & Yaakob, Z. (2014). Drying ofCitrus sinensisPeels in an Inert Fluidized Bed: Kinetics, Microbiological Activity, Vitamin C, and Limonene Determination. Drying Technology, 32(5), 497-508. doi:10.1080/07373937.2013.838782 es_ES
dc.description.references Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosumL.): Drying kinetics and quality characteristics. Drying Technology, 34(6), 665-684. doi:10.1080/07373937.2015.1070358 es_ES
dc.description.references Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890 es_ES
dc.description.references Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0 es_ES
dc.description.references Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015 es_ES
dc.description.references Martins, M. P., Cortés, E. J., Eim, V., Mulet, A., & Cárcel, J. A. (2018). Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality. Drying Technology, 37(5), 559-568. doi:10.1080/07373937.2018.1474476 es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428 es_ES
dc.description.references Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 12(4), 315-323. doi:10.1177/1082013206067352 es_ES
dc.description.references Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017 es_ES
dc.description.references Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009 es_ES
dc.description.references Beigi, M. (2015). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442. doi:10.1007/s00231-015-1646-8 es_ES
dc.description.references Santos, P. H. S., & Silva, M. A. (2008). Retention of Vitamin C in Drying Processes of Fruits and Vegetables—A Review. Drying Technology, 26(12), 1421-1437. doi:10.1080/07373930802458911 es_ES
dc.description.references Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371 es_ES
dc.description.references Santacatalina, J. V., Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., García-Pérez, J. V., & Cárcel, J. A. (2014). Use of Novel Drying Technologies to Improve the Retention of Infused Olive Leaf Polyphenols. Drying Technology, 33(9), 1051-1060. doi:10.1080/07373937.2014.982251 es_ES
dc.description.references Silva, V. M., & Viotto, L. A. (2010). Drying of sicilian lemon residue: influence of process variables on the evaluation of the dietary fiber produced. Ciência e Tecnologia de Alimentos, 30(2), 421-428. doi:10.1590/s0101-20612010000200020 es_ES
dc.description.references Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Campanella, O. H., & Welti-Chanes, J. (2018). Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. Journal of Food Quality, 2018, 1-11. doi:10.1155/2018/9105237 es_ES
dc.description.references Abou-Arab, E. A., Mahmoud, M. H., & Abu-Salem, F. M. (2017). Functional Properties of Citrus Peel as Affected by Drying Methods. American Journal of Food Technology, 12(3), 193-200. doi:10.3923/ajft.2017.193.200 es_ES
dc.description.references Ghanem Romdhane, N., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of Air-Drying Temperature on Kinetics of Quality Attributes of Lemon (Citrus limoncv. lunari) Peels. Drying Technology, 33(13), 1581-1589. doi:10.1080/07373937.2015.1012266 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem