Mostrar el registro sencillo del ítem
dc.contributor.author | Mello, Ronaldo E. | es_ES |
dc.contributor.author | Fontana, Alessia | es_ES |
dc.contributor.author | Mulet Pons, Antonio | es_ES |
dc.contributor.author | Correa, J.L.G | es_ES |
dc.contributor.author | Carcel, J. A. | es_ES |
dc.date.accessioned | 2020-11-26T04:32:11Z | |
dc.date.available | 2020-11-26T04:32:11Z | |
dc.date.issued | 2020-01-02 | es_ES |
dc.identifier.issn | 0737-3937 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155856 | |
dc.description | This is an Author's Accepted Manuscript of an article published in Ronaldo E. Mello, Alessia Fontana, Antonio Mulet, Jefferson Luiz, G. Correa & Juan A. Cárcel (2020) Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature, Drying Technology, 38:1-2, 259-267, DOI: 10.1080/07373937.2019.1645685 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/07373937.2019.1645685 | es_ES |
dc.description.abstract | [EN] Atmospheric freeze-drying (AFD) at -10 degrees C and moderate temperature convective drying (MTD) at 50 degrees C without and with ultrasound application (20.5 kW/m(3)) were carried out. Alcohol insoluble residue (AIR) and its swelling capacity (SC), water retention capacity (WRC) and fat retention capacity (FRC) were measured in the dried product. Ultrasound significantly shortened the drying time in both processes, the intensification effect being more significant in atmospheric freeze-drying (57% and 27% reduction in atmospheric freeze-drying and convective drying, respectively). As regards AIR and WRC, no effect was observed of either the drying temperature or ultrasound application. On the contrary, SC was significantly lower in AFD samples. The FRC of MTD samples was similar to that of the fresh ones and higher than the values obtained for atmospheric freeze-dried samples. Therefore, convective drying at moderate temperature preserved the AIR properties better than atmospheric freeze-drying. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of INIA-ERDF through project RTA2015-00060-C04-02. We are also grateful for the economic support of the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (Capes)- Finance Code 001, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa de Minas Gerais (FAPEMIG). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Drying Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | By-product | es_ES |
dc.subject | Process intensification | es_ES |
dc.subject | Fiber | es_ES |
dc.subject | Alcohol insoluble residue | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/07373937.2019.1645685 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Mello, RE.; Fontana, A.; Mulet Pons, A.; Correa, J.; Carcel, JA. (2020). Ultrasound-assisted drying of orange peel in atmospheric freeze-dryer and convective dryer operated at moderate temperature. Drying Technology. 38(1-2):259-267. https://doi.org/10.1080/07373937.2019.1645685 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/07373937.2019.1645685 | es_ES |
dc.description.upvformatpinicio | 259 | es_ES |
dc.description.upvformatpfin | 267 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\398948 | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de Minas Gerais | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Freire, F. B., Atxutegi, A., Freire, F. B., Freire, J. T., Aguado, R., & Olazar, M. (2016). An adaptive lumped parameter cascade model for orange juice solid waste drying in spouted bed. Drying Technology, 35(5), 577-584. doi:10.1080/07373937.2016.1190937 | es_ES |
dc.description.references | Tasirin, S. M., Puspasari, I., Sahalan, A. Z., Mokhtar, M., Ghani, M. K. A., & Yaakob, Z. (2014). Drying ofCitrus sinensisPeels in an Inert Fluidized Bed: Kinetics, Microbiological Activity, Vitamin C, and Limonene Determination. Drying Technology, 32(5), 497-508. doi:10.1080/07373937.2013.838782 | es_ES |
dc.description.references | Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosumL.): Drying kinetics and quality characteristics. Drying Technology, 34(6), 665-684. doi:10.1080/07373937.2015.1070358 | es_ES |
dc.description.references | Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890 | es_ES |
dc.description.references | Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0 | es_ES |
dc.description.references | Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015 | es_ES |
dc.description.references | Martins, M. P., Cortés, E. J., Eim, V., Mulet, A., & Cárcel, J. A. (2018). Stabilization of apple peel by drying. Influence of temperature and ultrasound application on drying kinetics and product quality. Drying Technology, 37(5), 559-568. doi:10.1080/07373937.2018.1474476 | es_ES |
dc.description.references | García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 27(2), 281-287. doi:10.1080/07373930802606428 | es_ES |
dc.description.references | Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 12(4), 315-323. doi:10.1177/1082013206067352 | es_ES |
dc.description.references | Garau, M. C., Simal, S., Femenia, A., & Rosselló, C. (2006). Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 75(2), 288-295. doi:10.1016/j.jfoodeng.2005.04.017 | es_ES |
dc.description.references | Garau, M. C., Simal, S., Rosselló, C., & Femenia, A. (2007). Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chemistry, 104(3), 1014-1024. doi:10.1016/j.foodchem.2007.01.009 | es_ES |
dc.description.references | Beigi, M. (2015). Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat and Mass Transfer, 52(8), 1435-1442. doi:10.1007/s00231-015-1646-8 | es_ES |
dc.description.references | Santos, P. H. S., & Silva, M. A. (2008). Retention of Vitamin C in Drying Processes of Fruits and Vegetables—A Review. Drying Technology, 26(12), 1421-1437. doi:10.1080/07373930802458911 | es_ES |
dc.description.references | Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371 | es_ES |
dc.description.references | Santacatalina, J. V., Ahmad-Qasem, M. H., Barrajón-Catalán, E., Micol, V., García-Pérez, J. V., & Cárcel, J. A. (2014). Use of Novel Drying Technologies to Improve the Retention of Infused Olive Leaf Polyphenols. Drying Technology, 33(9), 1051-1060. doi:10.1080/07373937.2014.982251 | es_ES |
dc.description.references | Silva, V. M., & Viotto, L. A. (2010). Drying of sicilian lemon residue: influence of process variables on the evaluation of the dietary fiber produced. Ciência e Tecnologia de Alimentos, 30(2), 421-428. doi:10.1590/s0101-20612010000200020 | es_ES |
dc.description.references | Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Campanella, O. H., & Welti-Chanes, J. (2018). Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. Journal of Food Quality, 2018, 1-11. doi:10.1155/2018/9105237 | es_ES |
dc.description.references | Abou-Arab, E. A., Mahmoud, M. H., & Abu-Salem, F. M. (2017). Functional Properties of Citrus Peel as Affected by Drying Methods. American Journal of Food Technology, 12(3), 193-200. doi:10.3923/ajft.2017.193.200 | es_ES |
dc.description.references | Ghanem Romdhane, N., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. (2015). Effect of Air-Drying Temperature on Kinetics of Quality Attributes of Lemon (Citrus limoncv. lunari) Peels. Drying Technology, 33(13), 1581-1589. doi:10.1080/07373937.2015.1012266 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |