- -

An efficient cloud storage system for tele-health services

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An efficient cloud storage system for tele-health services

Show full item record

Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). An efficient cloud storage system for tele-health services. The Journal of Supercomputing. 73(7):2949-2965. https://doi.org/10.1007/s11227-017-1977-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156014

Files in this item

Item Metadata

Title: An efficient cloud storage system for tele-health services
Author: Chen, Longbin Qiu, Meikang Dai, Wenyun Hassan Mohamed, Houcine
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Healthcare service is a critical aspect of our daily lives. Enabled by technologies such as wearable devices and wireless sensor networks, tele-health has becoming a promising new field in IT industry. Wearable devices, ...[+]
Subjects: Hybrid memory , Cloud storage , Tele-health , Resource allocation , Heuristic approach
Copyrigths: Cerrado
Source:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-017-1977-y
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11227-017-1977-y
Project ID:
ZJU/ICT1600236
Thanks:
This work has been partially supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China ICT1600236 (Prof. Meikang Qiu)
Type: Artículo

References

Guthaus MR (2001) MiBench: a free, commercially representative embedded benchmark suite. In: IEEE WWC, pp 3–14

Hu J (2012) Optimizing data allocation and memory configuration for non-volatile memory based hybrid SPM on embedded CMPs. In: IPDPSW. Shanghai, China, pp 982–989

IHS (2012) Medical Devices & Healthcare IT. https://technology.ihs.com/researchareas/450450 [+]
Guthaus MR (2001) MiBench: a free, commercially representative embedded benchmark suite. In: IEEE WWC, pp 3–14

Hu J (2012) Optimizing data allocation and memory configuration for non-volatile memory based hybrid SPM on embedded CMPs. In: IPDPSW. Shanghai, China, pp 982–989

IHS (2012) Medical Devices & Healthcare IT. https://technology.ihs.com/researchareas/450450

Lai S (2003) Current status of the phase change memory and its future. In: IEEE International on Electron Devices Meeting, 2003. IEDM’03 Technical Digest

Li J, Qiu M (2011) Resource allocation robustness in multi-core embedded systems with inaccurate information. J Syst Archit 57(9):840–849

Meza J (2012) Enabling efficient and scalable hybrid memories using fine-granularity DRAM cache management. IEEE Comput Archit Lett 11(2):61–64

Okhonin S (2008) Ultra-scaled Z-RAM cell. In: Proceedings of the IEEE International SOI Conference, pp 157–158

Qiu M, Chen Z (2014) Energy-aware data allocation with hybrid memory for mobile cloud systems. Syst J IEEE PP(99):1–10

Qiu M, Ming Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans Comput 64(12):3528–3540

Ramos LE (2011) Page placement in hybrid memory systems. In: Proceedings of the International Conference on Supercomputing, pp 85–95

Shanavas A (2012) Zero capacitor RAM. http://www.edutalks.org/downloads/zram.pdf

Tian W (2013) Task allocation on nonvolatile-memory-based hybrid main memory. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1271–1284

Wilton SJE, Jouppi NP (1996) CACTI: an enhanced cache access and cycle time model. IEEE J Solid-State Circuits 31(5):677–688

Wong H (2010) Phase change memory. Proc IEEE 98(12):2201–2227

Zhang L, Qiu M (2010) Variable partitioning and scheduling for MPSoC with virtually shared scratch pad memory. J Signal Process Syst 58(2):247–265

[-]

This item appears in the following Collection(s)

Show full item record