- -

An efficient cloud storage system for tele-health services

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An efficient cloud storage system for tele-health services

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chen, Longbin es_ES
dc.contributor.author Qiu, Meikang es_ES
dc.contributor.author Dai, Wenyun es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2020-11-28T04:31:15Z
dc.date.available 2020-11-28T04:31:15Z
dc.date.issued 2017-07 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156014
dc.description.abstract [EN] Healthcare service is a critical aspect of our daily lives. Enabled by technologies such as wearable devices and wireless sensor networks, tele-health has becoming a promising new field in IT industry. Wearable devices, which detect real-time human body conditions, form body sensor networks (BSNs) for patients. In a cloud-enabled tele-health ecosystem, health data are collected by the BSN and sent to mobile devices such as smart phones and tablets. These embedded devices process the data and forward them to remote data centers. Due to the energy and time constraints of embedded systems, the effectiveness of storage systems become a critical issue. For years, memory technologies such as SRAMs and DRAMs have been widely used in computer systems. SRAMs are fast while DRAMs have high density. However, SRAMs have the disadvantage of power leakage and low density. DRAMs are slower in read and write operations. New memory technology for embedded tele-health is needed. In the paper, we propose a hybrid memory system for embedded tele-health. We combine phase-change memory PCM with flash memory to meet energy and latency requirement while reducing capital expenditure. Moreover, the data allocation and storage on server side is also a challenging problem in tele-health. Effective storage system designs are desired to efficiently store and manage health care data from users. Therefore, in the paper, we design a ecosystem for tele-health including the memory storage for embedded devices and data storage for tele-health data centers. To fully utilize the proposed ecosystem, we design several resource allocation algorithms with dynamic programming and heuristics. The experiments show that our approaches can achieve up to 30% performance enhancement compared to greedy approaches. es_ES
dc.description.sponsorship This work has been partially supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China ICT1600236 (Prof. Meikang Qiu) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hybrid memory es_ES
dc.subject Cloud storage es_ES
dc.subject Tele-health es_ES
dc.subject Resource allocation es_ES
dc.subject Heuristic approach es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title An efficient cloud storage system for tele-health services es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-017-1977-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ZJU//ICT1600236/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). An efficient cloud storage system for tele-health services. The Journal of Supercomputing. 73(7):2949-2965. https://doi.org/10.1007/s11227-017-1977-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-017-1977-y es_ES
dc.description.upvformatpinicio 2949 es_ES
dc.description.upvformatpfin 2965 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\348701 es_ES
dc.contributor.funder Zhejiang University es_ES
dc.description.references Guthaus MR (2001) MiBench: a free, commercially representative embedded benchmark suite. In: IEEE WWC, pp 3–14 es_ES
dc.description.references Hu J (2012) Optimizing data allocation and memory configuration for non-volatile memory based hybrid SPM on embedded CMPs. In: IPDPSW. Shanghai, China, pp 982–989 es_ES
dc.description.references IHS (2012) Medical Devices & Healthcare IT. https://technology.ihs.com/researchareas/450450 es_ES
dc.description.references Lai S (2003) Current status of the phase change memory and its future. In: IEEE International on Electron Devices Meeting, 2003. IEDM’03 Technical Digest es_ES
dc.description.references Li J, Qiu M (2011) Resource allocation robustness in multi-core embedded systems with inaccurate information. J Syst Archit 57(9):840–849 es_ES
dc.description.references Meza J (2012) Enabling efficient and scalable hybrid memories using fine-granularity DRAM cache management. IEEE Comput Archit Lett 11(2):61–64 es_ES
dc.description.references Okhonin S (2008) Ultra-scaled Z-RAM cell. In: Proceedings of the IEEE International SOI Conference, pp 157–158 es_ES
dc.description.references Qiu M, Chen Z (2014) Energy-aware data allocation with hybrid memory for mobile cloud systems. Syst J IEEE PP(99):1–10 es_ES
dc.description.references Qiu M, Ming Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans Comput 64(12):3528–3540 es_ES
dc.description.references Ramos LE (2011) Page placement in hybrid memory systems. In: Proceedings of the International Conference on Supercomputing, pp 85–95 es_ES
dc.description.references Shanavas A (2012) Zero capacitor RAM. http://www.edutalks.org/downloads/zram.pdf es_ES
dc.description.references Tian W (2013) Task allocation on nonvolatile-memory-based hybrid main memory. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1271–1284 es_ES
dc.description.references Wilton SJE, Jouppi NP (1996) CACTI: an enhanced cache access and cycle time model. IEEE J Solid-State Circuits 31(5):677–688 es_ES
dc.description.references Wong H (2010) Phase change memory. Proc IEEE 98(12):2201–2227 es_ES
dc.description.references Zhang L, Qiu M (2010) Variable partitioning and scheduling for MPSoC with virtually shared scratch pad memory. J Signal Process Syst 58(2):247–265 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem