Mostrar el registro sencillo del ítem
dc.contributor.author | Chen, Longbin | es_ES |
dc.contributor.author | Qiu, Meikang | es_ES |
dc.contributor.author | Dai, Wenyun | es_ES |
dc.contributor.author | Hassan Mohamed, Houcine | es_ES |
dc.date.accessioned | 2020-11-28T04:31:15Z | |
dc.date.available | 2020-11-28T04:31:15Z | |
dc.date.issued | 2017-07 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156014 | |
dc.description.abstract | [EN] Healthcare service is a critical aspect of our daily lives. Enabled by technologies such as wearable devices and wireless sensor networks, tele-health has becoming a promising new field in IT industry. Wearable devices, which detect real-time human body conditions, form body sensor networks (BSNs) for patients. In a cloud-enabled tele-health ecosystem, health data are collected by the BSN and sent to mobile devices such as smart phones and tablets. These embedded devices process the data and forward them to remote data centers. Due to the energy and time constraints of embedded systems, the effectiveness of storage systems become a critical issue. For years, memory technologies such as SRAMs and DRAMs have been widely used in computer systems. SRAMs are fast while DRAMs have high density. However, SRAMs have the disadvantage of power leakage and low density. DRAMs are slower in read and write operations. New memory technology for embedded tele-health is needed. In the paper, we propose a hybrid memory system for embedded tele-health. We combine phase-change memory PCM with flash memory to meet energy and latency requirement while reducing capital expenditure. Moreover, the data allocation and storage on server side is also a challenging problem in tele-health. Effective storage system designs are desired to efficiently store and manage health care data from users. Therefore, in the paper, we design a ecosystem for tele-health including the memory storage for embedded devices and data storage for tele-health data centers. To fully utilize the proposed ecosystem, we design several resource allocation algorithms with dynamic programming and heuristics. The experiments show that our approaches can achieve up to 30% performance enhancement compared to greedy approaches. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China ICT1600236 (Prof. Meikang Qiu) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hybrid memory | es_ES |
dc.subject | Cloud storage | es_ES |
dc.subject | Tele-health | es_ES |
dc.subject | Resource allocation | es_ES |
dc.subject | Heuristic approach | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | An efficient cloud storage system for tele-health services | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-017-1977-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ZJU//ICT1600236/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Chen, L.; Qiu, M.; Dai, W.; Hassan Mohamed, H. (2017). An efficient cloud storage system for tele-health services. The Journal of Supercomputing. 73(7):2949-2965. https://doi.org/10.1007/s11227-017-1977-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-017-1977-y | es_ES |
dc.description.upvformatpinicio | 2949 | es_ES |
dc.description.upvformatpfin | 2965 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 73 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\348701 | es_ES |
dc.contributor.funder | Zhejiang University | es_ES |
dc.description.references | Guthaus MR (2001) MiBench: a free, commercially representative embedded benchmark suite. In: IEEE WWC, pp 3–14 | es_ES |
dc.description.references | Hu J (2012) Optimizing data allocation and memory configuration for non-volatile memory based hybrid SPM on embedded CMPs. In: IPDPSW. Shanghai, China, pp 982–989 | es_ES |
dc.description.references | IHS (2012) Medical Devices & Healthcare IT. https://technology.ihs.com/researchareas/450450 | es_ES |
dc.description.references | Lai S (2003) Current status of the phase change memory and its future. In: IEEE International on Electron Devices Meeting, 2003. IEDM’03 Technical Digest | es_ES |
dc.description.references | Li J, Qiu M (2011) Resource allocation robustness in multi-core embedded systems with inaccurate information. J Syst Archit 57(9):840–849 | es_ES |
dc.description.references | Meza J (2012) Enabling efficient and scalable hybrid memories using fine-granularity DRAM cache management. IEEE Comput Archit Lett 11(2):61–64 | es_ES |
dc.description.references | Okhonin S (2008) Ultra-scaled Z-RAM cell. In: Proceedings of the IEEE International SOI Conference, pp 157–158 | es_ES |
dc.description.references | Qiu M, Chen Z (2014) Energy-aware data allocation with hybrid memory for mobile cloud systems. Syst J IEEE PP(99):1–10 | es_ES |
dc.description.references | Qiu M, Ming Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans Comput 64(12):3528–3540 | es_ES |
dc.description.references | Ramos LE (2011) Page placement in hybrid memory systems. In: Proceedings of the International Conference on Supercomputing, pp 85–95 | es_ES |
dc.description.references | Shanavas A (2012) Zero capacitor RAM. http://www.edutalks.org/downloads/zram.pdf | es_ES |
dc.description.references | Tian W (2013) Task allocation on nonvolatile-memory-based hybrid main memory. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(7):1271–1284 | es_ES |
dc.description.references | Wilton SJE, Jouppi NP (1996) CACTI: an enhanced cache access and cycle time model. IEEE J Solid-State Circuits 31(5):677–688 | es_ES |
dc.description.references | Wong H (2010) Phase change memory. Proc IEEE 98(12):2201–2227 | es_ES |
dc.description.references | Zhang L, Qiu M (2010) Variable partitioning and scheduling for MPSoC with virtually shared scratch pad memory. J Signal Process Syst 58(2):247–265 | es_ES |