Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187-194. doi:10.1016/j.cmpb.2005.06.012
Abásolo, D., Hornero, R., Espino, P., Álvarez, D., & Poza, J. (2006). Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241-253. doi:10.1088/0967-3334/27/3/003
Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355
[+]
Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187-194. doi:10.1016/j.cmpb.2005.06.012
Abásolo, D., Hornero, R., Espino, P., Álvarez, D., & Poza, J. (2006). Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241-253. doi:10.1088/0967-3334/27/3/003
Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. doi:10.1007/bf01016429
Sinai, Y. G. (1988). About A. N. Kolmogorov’s work on the entropy of dynamical systems. Ergodic Theory and Dynamical Systems, 8(4), 501-502. doi:10.1017/s0143385700004648
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039
Simons, S., Abasolo, D., & Escudero, J. (2015). Classification of Alzheimer’s disease from quadratic sample entropy of electroencephalogram. Healthcare Technology Letters, 2(3), 70-73. doi:10.1049/htl.2014.0106
Simons, S., Espino, P., & Abásolo, D. (2018). Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the Method Superior to Sample Entropy? Entropy, 20(1), 21. doi:10.3390/e20010021
Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871
Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870
Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906
Wu, S.-D., Wu, C.-W., Lin, S.-G., Lee, K.-Y., & Peng, C.-K. (2014). Analysis of complex time series using refined composite multiscale entropy. Physics Letters A, 378(20), 1369-1374. doi:10.1016/j.physleta.2014.03.034
Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102
Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696
Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385
Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0
Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696
Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7
Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052
Liu, T., Yao, W., Wu, M., Shi, Z., Wang, J., & Ning, X. (2017). Multiscale permutation entropy analysis of electrocardiogram. Physica A: Statistical Mechanics and its Applications, 471, 492-498. doi:10.1016/j.physa.2016.11.102
Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176
Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008
Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911
Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011
Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342
Koski, A., Juhola, M., & Meriste, M. (1995). Syntactic recognition of ECG signals by attributed finite automata. Pattern Recognition, 28(12), 1927-1940. doi:10.1016/0031-3203(95)00052-6
Koski, A. (1996). Primitive coding of structural ECG features. Pattern Recognition Letters, 17(11), 1215-1222. doi:10.1016/0167-8655(96)00079-7
Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002
Wessel, N., Ziehmann, C., Kurths, J., Meyerfeldt, U., Schirdewan, A., & Voss, A. (2000). Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Physical Review E, 61(1), 733-739. doi:10.1103/physreve.61.733
Cysarz, D., Lange, S., Matthiessen, P. F., & Leeuwen, P. van. (2007). Regular heartbeat dynamics are associated with cardiac health. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), R368-R372. doi:10.1152/ajpregu.00161.2006
Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013
Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215
Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078
Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9
Flood, M. W., Jensen, B. R., Malling, A.-S., & Lowery, M. M. (2019). Increased EMG intermuscular coherence and reduced signal complexity in Parkinson’s disease. Clinical Neurophysiology, 130(2), 259-269. doi:10.1016/j.clinph.2018.10.023
Tang, X., Zhang, X., Gao, X., Chen, X., & Zhou, P. (2018). A Novel Interpretation of Sample Entropy in Surface Electromyographic Examination of Complex Neuromuscular Alternations in Subacute and Chronic Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(9), 1878-1888. doi:10.1109/tnsre.2018.2864317
Zhu, X., Zhang, X., Tang, X., Gao, X., & Chen, X. (2017). Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy, 19(11), 624. doi:10.3390/e19110624
Bingham, A., Arjunan, S., Jelfs, B., & Kumar, D. (2017). Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy, 19(12), 697. doi:10.3390/e19120697
Montesinos, L., Castaldo, R., & Pecchia, L. (2018). On the use of approximate entropy and sample entropy with centre of pressure time-series. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0465-9
Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105
Li, D., Li, X., Liang, Z., Voss, L. J., & Sleigh, J. W. (2010). Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. Journal of Neural Engineering, 7(4), 046010. doi:10.1088/1741-2560/7/4/046010
Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102
Hari, V. N., Anand, G. V., Premkumar, A. B., & Madhukumar, A. S. (2012). Design and performance analysis of a signal detector based on suprathreshold stochastic resonance. Signal Processing, 92(7), 1745-1757. doi:10.1016/j.sigpro.2012.01.013
[-]