Mostrar el registro sencillo del ítem
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.date.accessioned | 2020-12-01T04:32:29Z | |
dc.date.available | 2020-12-01T04:32:29Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156108 | |
dc.description.abstract | [EN] The development of new measures and algorithms to quantify the entropy or related concepts of a data series is a continuous effort that has brought many innovations in this regard in recent years. The ultimate goal is usually to find new methods with a higher discriminating power, more efficient, more robust to noise and artifacts, less dependent on parameters or configurations, or any other possibly desirable feature. Among all these methods, Permutation Entropy (PE) is a complexity estimator for a time series that stands out due to its many strengths, with very few weaknesses. One of these weaknesses is the PE's disregarding of time series amplitude information. Some PE algorithm modifications have been proposed in order to introduce such information into the calculations. We propose in this paper a new method, Slope Entropy (SlopEn), that also addresses this flaw but in a different way, keeping the symbolic representation of subsequences using a novel encoding method based on the slope generated by two consecutive data samples. By means of a thorough and extensive set of comparative experiments with PE and Sample Entropy (SampEn), we demonstrate that SlopEn is a very promising method with clearly a better time series classification performance than those previous methods. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Permutation entropy | es_ES |
dc.subject | Sample entropy | es_ES |
dc.subject | Signal classification | es_ES |
dc.subject | Symbolic dynamics | es_ES |
dc.subject | Discriminating power | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e21121167 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cuesta Frau, D. (2019). Slope Entropy: A New Time Series Complexity Estimator Based on Both Symbolic Patterns and Amplitude Information. Entropy. 21(12):1-22. https://doi.org/10.3390/e21121167 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e21121167 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\401353 | es_ES |
dc.description.references | Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187-194. doi:10.1016/j.cmpb.2005.06.012 | es_ES |
dc.description.references | Abásolo, D., Hornero, R., Espino, P., Álvarez, D., & Poza, J. (2006). Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiological Measurement, 27(3), 241-253. doi:10.1088/0967-3334/27/3/003 | es_ES |
dc.description.references | Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355 | es_ES |
dc.description.references | Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 | es_ES |
dc.description.references | Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1-2), 479-487. doi:10.1007/bf01016429 | es_ES |
dc.description.references | Sinai, Y. G. (1988). About A. N. Kolmogorov’s work on the entropy of dynamical systems. Ergodic Theory and Dynamical Systems, 8(4), 501-502. doi:10.1017/s0143385700004648 | es_ES |
dc.description.references | Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 | es_ES |
dc.description.references | Simons, S., Abasolo, D., & Escudero, J. (2015). Classification of Alzheimer’s disease from quadratic sample entropy of electroencephalogram. Healthcare Technology Letters, 2(3), 70-73. doi:10.1049/htl.2014.0106 | es_ES |
dc.description.references | Simons, S., Espino, P., & Abásolo, D. (2018). Fuzzy Entropy Analysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the Method Superior to Sample Entropy? Entropy, 20(1), 21. doi:10.3390/e20010021 | es_ES |
dc.description.references | Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871 | es_ES |
dc.description.references | Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870 | es_ES |
dc.description.references | Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906 | es_ES |
dc.description.references | Wu, S.-D., Wu, C.-W., Lin, S.-G., Lee, K.-Y., & Peng, C.-K. (2014). Analysis of complex time series using refined composite multiscale entropy. Physics Letters A, 378(20), 1369-1374. doi:10.1016/j.physleta.2014.03.034 | es_ES |
dc.description.references | Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102 | es_ES |
dc.description.references | Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696 | es_ES |
dc.description.references | Cuesta-Frau, D., Murillo-Escobar, J. P., Orrego, D. A., & Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy, 21(4), 385. doi:10.3390/e21040385 | es_ES |
dc.description.references | Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0 | es_ES |
dc.description.references | Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696 | es_ES |
dc.description.references | Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7 | es_ES |
dc.description.references | Zunino, L., Olivares, F., Scholkmann, F., & Rosso, O. A. (2017). Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Physics Letters A, 381(22), 1883-1892. doi:10.1016/j.physleta.2017.03.052 | es_ES |
dc.description.references | Liu, T., Yao, W., Wu, M., Shi, Z., Wang, J., & Ning, X. (2017). Multiscale permutation entropy analysis of electrocardiogram. Physica A: Statistical Mechanics and its Applications, 471, 492-498. doi:10.1016/j.physa.2016.11.102 | es_ES |
dc.description.references | Gao, Y., Villecco, F., Li, M., & Song, W. (2017). Multi-Scale Permutation Entropy Based on Improved LMD and HMM for Rolling Bearing Diagnosis. Entropy, 19(4), 176. doi:10.3390/e19040176 | es_ES |
dc.description.references | Azami, H., & Escudero, J. (2016). Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation. Computer Methods and Programs in Biomedicine, 128, 40-51. doi:10.1016/j.cmpb.2016.02.008 | es_ES |
dc.description.references | Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911 | es_ES |
dc.description.references | Xiao-Feng, L., & Yue, W. (2009). Fine-grained permutation entropy as a measure of natural complexity for time series. Chinese Physics B, 18(7), 2690-2695. doi:10.1088/1674-1056/18/7/011 | es_ES |
dc.description.references | Cuesta–Frau, D. (2019). Permutation entropy: Influence of amplitude information on time series classification performance. Mathematical Biosciences and Engineering, 16(6), 6842-6857. doi:10.3934/mbe.2019342 | es_ES |
dc.description.references | Koski, A., Juhola, M., & Meriste, M. (1995). Syntactic recognition of ECG signals by attributed finite automata. Pattern Recognition, 28(12), 1927-1940. doi:10.1016/0031-3203(95)00052-6 | es_ES |
dc.description.references | Koski, A. (1996). Primitive coding of structural ECG features. Pattern Recognition Letters, 17(11), 1215-1222. doi:10.1016/0167-8655(96)00079-7 | es_ES |
dc.description.references | Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 | es_ES |
dc.description.references | Wessel, N., Ziehmann, C., Kurths, J., Meyerfeldt, U., Schirdewan, A., & Voss, A. (2000). Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Physical Review E, 61(1), 733-739. doi:10.1103/physreve.61.733 | es_ES |
dc.description.references | Cysarz, D., Lange, S., Matthiessen, P. F., & Leeuwen, P. van. (2007). Regular heartbeat dynamics are associated with cardiac health. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), R368-R372. doi:10.1152/ajpregu.00161.2006 | es_ES |
dc.description.references | Cuesta-Frau, D., Molina-Picó, A., Vargas, B., & González, P. (2019). Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy. Entropy, 21(10), 1013. doi:10.3390/e21101013 | es_ES |
dc.description.references | Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2 | es_ES |
dc.description.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 | es_ES |
dc.description.references | Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., & Lipsitz, L. A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(4), R1078-R1084. doi:10.1152/ajpregu.1996.271.4.r1078 | es_ES |
dc.description.references | Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-016-0483-9 | es_ES |
dc.description.references | Flood, M. W., Jensen, B. R., Malling, A.-S., & Lowery, M. M. (2019). Increased EMG intermuscular coherence and reduced signal complexity in Parkinson’s disease. Clinical Neurophysiology, 130(2), 259-269. doi:10.1016/j.clinph.2018.10.023 | es_ES |
dc.description.references | Tang, X., Zhang, X., Gao, X., Chen, X., & Zhou, P. (2018). A Novel Interpretation of Sample Entropy in Surface Electromyographic Examination of Complex Neuromuscular Alternations in Subacute and Chronic Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(9), 1878-1888. doi:10.1109/tnsre.2018.2864317 | es_ES |
dc.description.references | Zhu, X., Zhang, X., Tang, X., Gao, X., & Chen, X. (2017). Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy, 19(11), 624. doi:10.3390/e19110624 | es_ES |
dc.description.references | Bingham, A., Arjunan, S., Jelfs, B., & Kumar, D. (2017). Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue. Entropy, 19(12), 697. doi:10.3390/e19120697 | es_ES |
dc.description.references | Montesinos, L., Castaldo, R., & Pecchia, L. (2018). On the use of approximate entropy and sample entropy with centre of pressure time-series. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0465-9 | es_ES |
dc.description.references | Bubble Entropy: An Entropy Almost Free of Parameters. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2711-2718. doi:10.1109/tbme.2017.2664105 | es_ES |
dc.description.references | Li, D., Li, X., Liang, Z., Voss, L. J., & Sleigh, J. W. (2010). Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. Journal of Neural Engineering, 7(4), 046010. doi:10.1088/1741-2560/7/4/046010 | es_ES |
dc.description.references | Costa, M., Goldberger, A. L., & Peng, C.-K. (2002). Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical Review Letters, 89(6). doi:10.1103/physrevlett.89.068102 | es_ES |
dc.description.references | Hari, V. N., Anand, G. V., Premkumar, A. B., & Madhukumar, A. S. (2012). Design and performance analysis of a signal detector based on suprathreshold stochastic resonance. Signal Processing, 92(7), 1745-1757. doi:10.1016/j.sigpro.2012.01.013 | es_ES |