Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297
Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002
Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870
[+]
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297
Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002
Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870
Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3
Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2
Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005
Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005
Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0
Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102
Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7
Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007). True and false forbidden patterns in deterministic and random dynamics. Europhysics Letters (EPL), 79(5), 50001. doi:10.1209/0295-5075/79/50001
Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553
Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., & Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review Letters, 99(15). doi:10.1103/physrevlett.99.154102
Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2008). Combinatorial detection of determinism in noisy time series. EPL (Europhysics Letters), 83(6), 60005. doi:10.1209/0295-5075/83/60005
Yang, A. C., Tsai, S.-J., Lin, C.-P., & Peng, C.-K. (2018). A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00398
Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy, 19(10), 568. doi:10.3390/e19100568
Karmakar, C., Udhayakumar, R. K., Li, P., Venkatesh, S., & Palaniswami, M. (2017). Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00720
Cirugeda-Roldán, E. M., Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Vigil-Medina, L., & Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine, 114(3), 231-239. doi:10.1016/j.cmpb.2014.02.008
Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010
Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871
Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906
Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696
Keller, K., Unakafov, A., & Unakafova, V. (2014). Ordinal Patterns, Entropy, and EEG. Entropy, 16(12), 6212-6239. doi:10.3390/e16126212
Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018
Saco, P. M., Carpi, L. C., Figliola, A., Serrano, E., & Rosso, O. A. (2010). Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene. Physica A: Statistical Mechanics and its Applications, 389(21), 5022-5027. doi:10.1016/j.physa.2010.07.006
Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007
DeFord, D., & Moore, K. (2017). Random Walk Null Models for Time Series Data. Entropy, 19(11), 615. doi:10.3390/e19110615
Weather Datasethttps://doi.org/10.7910/DVN/DXQ8ZP
NOAA Global Surface Temperature Dataset (NOAAGlobalTemp, ftp.ncdc.noaa.gov), Version 4.0, August 2018https://doi.org/10.7289/V5FN144H
Balzter, H., Tate, N., Kaduk, J., Harper, D., Page, S., Morrison, R., … Jones, P. (2015). Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data. Climate, 3(1), 227-240. doi:10.3390/cli3010227
Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733
Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003
Wharton Research Data Services (WRDS), 1993–2018https://wrds-web.wharton.upenn.edu/wrds/
Zhou, R., Cai, R., & Tong, G. (2013). Applications of Entropy in Finance: A Review. Entropy, 15(12), 4909-4931. doi:10.3390/e15114909
Aboy, M., McNames, J., Thong, T., Tsunami, D., Ellenby, M. S., & Goldstein, B. (2005). An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Transactions on Biomedical Engineering, 52(10), 1662-1670. doi:10.1109/tbme.2005.855725
Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028
Redelico, F., Traversaro, F., García, M., Silva, W., Rosso, O., & Risk, M. (2017). Classification of Normal and Pre-Ictal EEG Signals Using Permutation Entropies and a Generalized Linear Model as a Classifier. Entropy, 19(2), 72. doi:10.3390/e19020072
Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911
Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197
Vallejo, M., Gallego, C. J., Duque-Muñoz, L., & Delgado-Trejos, E. (2018). Neuromuscular disease detection by neural networks and fuzzy entropy on time-frequency analysis of electromyography signals. Expert Systems, 35(4), e12274. doi:10.1111/exsy.12274
Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714
Kononenko, I., Šimec, E., & Robnik-Šikonja, M. (1997). Applied Intelligence, 7(1), 39-55. doi:10.1023/a:1008280620621
Rodríguez-Sotelo, J. L., Peluffo-Ordoñez, D., Cuesta-Frau, D., & Castellanos-Domínguez, G. (2012). Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Computer Methods and Programs in Biomedicine, 108(1), 250-261. doi:10.1016/j.cmpb.2012.04.007
[-]