- -

Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Murillo-Escobar, Juan Pablo es_ES
dc.contributor.author Orrego, Diana Alexandra es_ES
dc.contributor.author Delgado-Trejos, Edilson es_ES
dc.date.accessioned 2020-12-01T04:32:31Z
dc.date.available 2020-12-01T04:32:31Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156109
dc.description.abstract [EN] Permutation Entropy (PE) is a time series complexity measure commonly used in a variety of contexts, with medicine being the prime example. In its general form, it requires three input parameters for its calculation: time series length N, embedded dimension m, and embedded delay ¿. Inappropriate choices of these parameters may potentially lead to incorrect interpretations. However, there are no specific guidelines for an optimal selection of N, m, or ¿, only general recommendations such as N >> m!, ¿ = 1, or m = 3, . . . , 7. This paper deals specifically with the study of the practical implications of N >> m!, since long time series are often not available, or non-stationary, and other preliminary results suggest that low N values do not necessarily invalidate PE usefulness. Our study analyses the PE variation as a function of the series length N and embedded dimension m in the context of a diverse experimental set, both synthetic (random, spikes, or logistic model time series) and real¿world (climatology, seismic, financial, or biomedical time series), and the classification performance achieved with varying N and m. The results seem to indicate that shorter lengths than those suggested by N >> m! are sufficient for a stable PE calculation, and even very short time series can be robustly classified based on PE measurements before the stability point is reached. This may be due to the fact that there are forbidden patterns in chaotic time series, not all the patterns are equally informative, and differences among classes are already apparent at very short lengths. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Permutation entropy es_ES
dc.subject Embedded dimension es_ES
dc.subject Short time records es_ES
dc.subject Signal classification es_ES
dc.subject Relevance analysis es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e21040385 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Cuesta Frau, D.; Murillo-Escobar, JP.; Orrego, DA.; Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy. 21(4):1-25. https://doi.org/10.3390/e21040385 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e21040385 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\401344 es_ES
dc.description.references Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 es_ES
dc.description.references Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 es_ES
dc.description.references Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870 es_ES
dc.description.references Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3 es_ES
dc.description.references Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2 es_ES
dc.description.references Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 es_ES
dc.description.references Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005 es_ES
dc.description.references Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0 es_ES
dc.description.references Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102 es_ES
dc.description.references Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7 es_ES
dc.description.references Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007). True and false forbidden patterns in deterministic and random dynamics. Europhysics Letters (EPL), 79(5), 50001. doi:10.1209/0295-5075/79/50001 es_ES
dc.description.references Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553 es_ES
dc.description.references Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., & Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review Letters, 99(15). doi:10.1103/physrevlett.99.154102 es_ES
dc.description.references Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2008). Combinatorial detection of determinism in noisy time series. EPL (Europhysics Letters), 83(6), 60005. doi:10.1209/0295-5075/83/60005 es_ES
dc.description.references Yang, A. C., Tsai, S.-J., Lin, C.-P., & Peng, C.-K. (2018). A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00398 es_ES
dc.description.references Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy, 19(10), 568. doi:10.3390/e19100568 es_ES
dc.description.references Karmakar, C., Udhayakumar, R. K., Li, P., Venkatesh, S., & Palaniswami, M. (2017). Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00720 es_ES
dc.description.references Cirugeda-Roldán, E. M., Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Vigil-Medina, L., & Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine, 114(3), 231-239. doi:10.1016/j.cmpb.2014.02.008 es_ES
dc.description.references Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010 es_ES
dc.description.references Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871 es_ES
dc.description.references Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906 es_ES
dc.description.references Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696 es_ES
dc.description.references Keller, K., Unakafov, A., & Unakafova, V. (2014). Ordinal Patterns, Entropy, and EEG. Entropy, 16(12), 6212-6239. doi:10.3390/e16126212 es_ES
dc.description.references Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018 es_ES
dc.description.references Saco, P. M., Carpi, L. C., Figliola, A., Serrano, E., & Rosso, O. A. (2010). Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene. Physica A: Statistical Mechanics and its Applications, 389(21), 5022-5027. doi:10.1016/j.physa.2010.07.006 es_ES
dc.description.references Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 es_ES
dc.description.references DeFord, D., & Moore, K. (2017). Random Walk Null Models for Time Series Data. Entropy, 19(11), 615. doi:10.3390/e19110615 es_ES
dc.description.references Weather Datasethttps://doi.org/10.7910/DVN/DXQ8ZP es_ES
dc.description.references NOAA Global Surface Temperature Dataset (NOAAGlobalTemp, ftp.ncdc.noaa.gov), Version 4.0, August 2018https://doi.org/10.7289/V5FN144H es_ES
dc.description.references Balzter, H., Tate, N., Kaduk, J., Harper, D., Page, S., Morrison, R., … Jones, P. (2015). Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data. Climate, 3(1), 227-240. doi:10.3390/cli3010227 es_ES
dc.description.references Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733 es_ES
dc.description.references Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003 es_ES
dc.description.references Wharton Research Data Services (WRDS), 1993–2018https://wrds-web.wharton.upenn.edu/wrds/ es_ES
dc.description.references Zhou, R., Cai, R., & Tong, G. (2013). Applications of Entropy in Finance: A Review. Entropy, 15(12), 4909-4931. doi:10.3390/e15114909 es_ES
dc.description.references Aboy, M., McNames, J., Thong, T., Tsunami, D., Ellenby, M. S., & Goldstein, B. (2005). An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Transactions on Biomedical Engineering, 52(10), 1662-1670. doi:10.1109/tbme.2005.855725 es_ES
dc.description.references Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028 es_ES
dc.description.references Redelico, F., Traversaro, F., García, M., Silva, W., Rosso, O., & Risk, M. (2017). Classification of Normal and Pre-Ictal EEG Signals Using Permutation Entropies and a Generalized Linear Model as a Classifier. Entropy, 19(2), 72. doi:10.3390/e19020072 es_ES
dc.description.references Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911 es_ES
dc.description.references Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197 es_ES
dc.description.references Vallejo, M., Gallego, C. J., Duque-Muñoz, L., & Delgado-Trejos, E. (2018). Neuromuscular disease detection by neural networks and fuzzy entropy on time-frequency analysis of electromyography signals. Expert Systems, 35(4), e12274. doi:10.1111/exsy.12274 es_ES
dc.description.references Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714 es_ES
dc.description.references Kononenko, I., Šimec, E., & Robnik-Šikonja, M. (1997). Applied Intelligence, 7(1), 39-55. doi:10.1023/a:1008280620621 es_ES
dc.description.references Rodríguez-Sotelo, J. L., Peluffo-Ordoñez, D., Cuesta-Frau, D., & Castellanos-Domínguez, G. (2012). Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Computer Methods and Programs in Biomedicine, 108(1), 250-261. doi:10.1016/j.cmpb.2012.04.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem