Mostrar el registro sencillo del ítem
dc.contributor.author | Cuesta Frau, David | es_ES |
dc.contributor.author | Murillo-Escobar, Juan Pablo | es_ES |
dc.contributor.author | Orrego, Diana Alexandra | es_ES |
dc.contributor.author | Delgado-Trejos, Edilson | es_ES |
dc.date.accessioned | 2020-12-01T04:32:31Z | |
dc.date.available | 2020-12-01T04:32:31Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156109 | |
dc.description.abstract | [EN] Permutation Entropy (PE) is a time series complexity measure commonly used in a variety of contexts, with medicine being the prime example. In its general form, it requires three input parameters for its calculation: time series length N, embedded dimension m, and embedded delay ¿. Inappropriate choices of these parameters may potentially lead to incorrect interpretations. However, there are no specific guidelines for an optimal selection of N, m, or ¿, only general recommendations such as N >> m!, ¿ = 1, or m = 3, . . . , 7. This paper deals specifically with the study of the practical implications of N >> m!, since long time series are often not available, or non-stationary, and other preliminary results suggest that low N values do not necessarily invalidate PE usefulness. Our study analyses the PE variation as a function of the series length N and embedded dimension m in the context of a diverse experimental set, both synthetic (random, spikes, or logistic model time series) and real¿world (climatology, seismic, financial, or biomedical time series), and the classification performance achieved with varying N and m. The results seem to indicate that shorter lengths than those suggested by N >> m! are sufficient for a stable PE calculation, and even very short time series can be robustly classified based on PE measurements before the stability point is reached. This may be due to the fact that there are forbidden patterns in chaotic time series, not all the patterns are equally informative, and differences among classes are already apparent at very short lengths. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Permutation entropy | es_ES |
dc.subject | Embedded dimension | es_ES |
dc.subject | Short time records | es_ES |
dc.subject | Signal classification | es_ES |
dc.subject | Relevance analysis | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e21040385 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Cuesta Frau, D.; Murillo-Escobar, JP.; Orrego, DA.; Delgado-Trejos, E. (2019). Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications. Entropy. 21(4):1-25. https://doi.org/10.3390/e21040385 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e21040385 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\401344 | es_ES |
dc.description.references | Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301. doi:10.1073/pnas.88.6.2297 | es_ES |
dc.description.references | Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002 | es_ES |
dc.description.references | Sheng Lu, Xinnian Chen, Kanters, J. K., Solomon, I. C., & Chon, K. H. (2008). Automatic Selection of the Threshold Value $r$ for Approximate Entropy. IEEE Transactions on Biomedical Engineering, 55(8), 1966-1972. doi:10.1109/tbme.2008.919870 | es_ES |
dc.description.references | Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2012). The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Annals of Biomedical Engineering, 41(2), 349-365. doi:10.1007/s10439-012-0668-3 | es_ES |
dc.description.references | Mayer, C. C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., & Wassertheurer, S. (2014). Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics, 15(S6). doi:10.1186/1471-2105-15-s6-s2 | es_ES |
dc.description.references | Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005 | es_ES |
dc.description.references | Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., & Liu, S. (2013). Analysis of heart rate variability using fuzzy measure entropy. Computers in Biology and Medicine, 43(2), 100-108. doi:10.1016/j.compbiomed.2012.11.005 | es_ES |
dc.description.references | Li, D., Liang, Z., Wang, Y., Hagihira, S., Sleigh, J. W., & Li, X. (2012). Parameter selection in permutation entropy for an electroencephalographic measure of isoflurane anesthetic drug effect. Journal of Clinical Monitoring and Computing, 27(2), 113-123. doi:10.1007/s10877-012-9419-0 | es_ES |
dc.description.references | Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters, 88(17). doi:10.1103/physrevlett.88.174102 | es_ES |
dc.description.references | Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy. The European Physical Journal Special Topics, 222(2), 249-262. doi:10.1140/epjst/e2013-01862-7 | es_ES |
dc.description.references | Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2007). True and false forbidden patterns in deterministic and random dynamics. Europhysics Letters (EPL), 79(5), 50001. doi:10.1209/0295-5075/79/50001 | es_ES |
dc.description.references | Zanin, M., Zunino, L., Rosso, O. A., & Papo, D. (2012). Permutation Entropy and Its Main Biomedical and Econophysics Applications: A Review. Entropy, 14(8), 1553-1577. doi:10.3390/e14081553 | es_ES |
dc.description.references | Rosso, O. A., Larrondo, H. A., Martin, M. T., Plastino, A., & Fuentes, M. A. (2007). Distinguishing Noise from Chaos. Physical Review Letters, 99(15). doi:10.1103/physrevlett.99.154102 | es_ES |
dc.description.references | Amigó, J. M., Zambrano, S., & Sanjuán, M. A. F. (2008). Combinatorial detection of determinism in noisy time series. EPL (Europhysics Letters), 83(6), 60005. doi:10.1209/0295-5075/83/60005 | es_ES |
dc.description.references | Yang, A. C., Tsai, S.-J., Lin, C.-P., & Peng, C.-K. (2018). A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00398 | es_ES |
dc.description.references | Shi, B., Zhang, Y., Yuan, C., Wang, S., & Li, P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy, 19(10), 568. doi:10.3390/e19100568 | es_ES |
dc.description.references | Karmakar, C., Udhayakumar, R. K., Li, P., Venkatesh, S., & Palaniswami, M. (2017). Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00720 | es_ES |
dc.description.references | Cirugeda-Roldán, E. M., Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Vigil-Medina, L., & Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine, 114(3), 231-239. doi:10.1016/j.cmpb.2014.02.008 | es_ES |
dc.description.references | Lake, D. E., & Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H319-H325. doi:10.1152/ajpheart.00561.2010 | es_ES |
dc.description.references | Cuesta-Frau, D., Novák, D., Burda, V., Molina-Picó, A., Vargas, B., Mraz, M., … Haluzik, M. (2018). Characterization of Artifact Influence on the Classification of Glucose Time Series Using Sample Entropy Statistics. Entropy, 20(11), 871. doi:10.3390/e20110871 | es_ES |
dc.description.references | Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2). doi:10.1103/physreve.71.021906 | es_ES |
dc.description.references | Cuesta–Frau, D., Varela–Entrecanales, M., Molina–Picó, A., & Vargas, B. (2018). Patterns with Equal Values in Permutation Entropy: Do They Really Matter for Biosignal Classification? Complexity, 2018, 1-15. doi:10.1155/2018/1324696 | es_ES |
dc.description.references | Keller, K., Unakafov, A., & Unakafova, V. (2014). Ordinal Patterns, Entropy, and EEG. Entropy, 16(12), 6212-6239. doi:10.3390/e16126212 | es_ES |
dc.description.references | Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., Jordán–Núñez, J., Vargas, B., & Vigil, L. (2018). Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm. Computer Methods and Programs in Biomedicine, 165, 197-204. doi:10.1016/j.cmpb.2018.08.018 | es_ES |
dc.description.references | Saco, P. M., Carpi, L. C., Figliola, A., Serrano, E., & Rosso, O. A. (2010). Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene. Physica A: Statistical Mechanics and its Applications, 389(21), 5022-5027. doi:10.1016/j.physa.2010.07.006 | es_ES |
dc.description.references | Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 | es_ES |
dc.description.references | DeFord, D., & Moore, K. (2017). Random Walk Null Models for Time Series Data. Entropy, 19(11), 615. doi:10.3390/e19110615 | es_ES |
dc.description.references | Weather Datasethttps://doi.org/10.7910/DVN/DXQ8ZP | es_ES |
dc.description.references | NOAA Global Surface Temperature Dataset (NOAAGlobalTemp, ftp.ncdc.noaa.gov), Version 4.0, August 2018https://doi.org/10.7289/V5FN144H | es_ES |
dc.description.references | Balzter, H., Tate, N., Kaduk, J., Harper, D., Page, S., Morrison, R., … Jones, P. (2015). Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data. Climate, 3(1), 227-240. doi:10.3390/cli3010227 | es_ES |
dc.description.references | Glynn, C. C., & Konstantinou, K. I. (2016). Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption. Scientific Reports, 6(1). doi:10.1038/srep37733 | es_ES |
dc.description.references | Zhang, Y., & Shang, P. (2017). Permutation entropy analysis of financial time series based on Hill’s diversity number. Communications in Nonlinear Science and Numerical Simulation, 53, 288-298. doi:10.1016/j.cnsns.2017.05.003 | es_ES |
dc.description.references | Wharton Research Data Services (WRDS), 1993–2018https://wrds-web.wharton.upenn.edu/wrds/ | es_ES |
dc.description.references | Zhou, R., Cai, R., & Tong, G. (2013). Applications of Entropy in Finance: A Review. Entropy, 15(12), 4909-4931. doi:10.3390/e15114909 | es_ES |
dc.description.references | Aboy, M., McNames, J., Thong, T., Tsunami, D., Ellenby, M. S., & Goldstein, B. (2005). An Automatic Beat Detection Algorithm for Pressure Signals. IEEE Transactions on Biomedical Engineering, 52(10), 1662-1670. doi:10.1109/tbme.2005.855725 | es_ES |
dc.description.references | Cuesta–Frau, D., Miró–Martínez, P., Jordán Núñez, J., Oltra–Crespo, S., & Molina Picó, A. (2017). Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Computers in Biology and Medicine, 87, 141-151. doi:10.1016/j.compbiomed.2017.05.028 | es_ES |
dc.description.references | Redelico, F., Traversaro, F., García, M., Silva, W., Rosso, O., & Risk, M. (2017). Classification of Normal and Pre-Ictal EEG Signals Using Permutation Entropies and a Generalized Linear Model as a Classifier. Entropy, 19(2), 72. doi:10.3390/e19020072 | es_ES |
dc.description.references | Fadlallah, B., Chen, B., Keil, A., & Príncipe, J. (2013). Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Physical Review E, 87(2). doi:10.1103/physreve.87.022911 | es_ES |
dc.description.references | Zanin, M. (2008). Forbidden patterns in financial time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 013119. doi:10.1063/1.2841197 | es_ES |
dc.description.references | Vallejo, M., Gallego, C. J., Duque-Muñoz, L., & Delgado-Trejos, E. (2018). Neuromuscular disease detection by neural networks and fuzzy entropy on time-frequency analysis of electromyography signals. Expert Systems, 35(4), e12274. doi:10.1111/exsy.12274 | es_ES |
dc.description.references | Robnik-Šikonja, M., & Kononenko, I. (2003). Machine Learning, 53(1/2), 23-69. doi:10.1023/a:1025667309714 | es_ES |
dc.description.references | Kononenko, I., Šimec, E., & Robnik-Šikonja, M. (1997). Applied Intelligence, 7(1), 39-55. doi:10.1023/a:1008280620621 | es_ES |
dc.description.references | Rodríguez-Sotelo, J. L., Peluffo-Ordoñez, D., Cuesta-Frau, D., & Castellanos-Domínguez, G. (2012). Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Computer Methods and Programs in Biomedicine, 108(1), 250-261. doi:10.1016/j.cmpb.2012.04.007 | es_ES |