- -

A zonal approach for estimating pressure ratio at compressor extreme off-design conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A zonal approach for estimating pressure ratio at compressor extreme off-design conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galindo, José es_ES
dc.contributor.author Navarro, Roberto es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Tarí, Daniel es_ES
dc.contributor.author Tartoussi, H. es_ES
dc.contributor.author Guilain, S. es_ES
dc.date.accessioned 2020-12-01T04:32:50Z
dc.date.available 2020-12-01T04:32:50Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156113
dc.description This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418754899 es_ES
dc.description.abstract [EN] Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Daniel Tari is partially supported through contract FPI-S2-2015-1095 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Compressor map es_ES
dc.subject Compression ratio es_ES
dc.subject Off-design extrapolation es_ES
dc.subject Mathematical model es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A zonal approach for estimating pressure ratio at compressor extreme off-design conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418754899 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1095/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Galindo, J.; Navarro, R.; García-Cuevas González, LM.; Tarí, D.; Tartoussi, H.; Guilain, S. (2019). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research. 20(4):393-404. https://doi.org/10.1177/1468087418754899 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418754899 es_ES
dc.description.upvformatpinicio 393 es_ES
dc.description.upvformatpfin 404 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\352214 es_ES
dc.contributor.funder Renault, S.A.S. es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Mezher, H., Chalet, D., Migaud, J., Raimbault, V., & Chesse, P. (2014). Wave dynamics measurement and characterization of a charge air cooler at the intake of an internal combustion engine with integration into a nonlinear code. International Journal of Engine Research, 15(6), 664-683. doi:10.1177/1468087413513584 es_ES
dc.description.references Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., & Assanis, D. N. (2012). Thermodynamic sweet spot for high-efficiency, dilute, boosted gasoline engines. International Journal of Engine Research, 14(3), 260-278. doi:10.1177/1468087412455372 es_ES
dc.description.references Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025 es_ES
dc.description.references Serrano, J. R., Dolz, V., Novella, R., & García, A. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: Evaluation of alternative solutions. Applied Thermal Engineering, 36, 279-287. doi:10.1016/j.applthermaleng.2011.10.024 es_ES
dc.description.references Bousquet, Y., Carbonneau, X., Dufour, G., Binder, N., & Trebinjac, I. (2014). Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations. International Journal of Rotating Machinery, 2014, 1-11. doi:10.1155/2014/729629 es_ES
dc.description.references Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow, 61, 245-255. doi:10.1016/j.ijheatfluidflow.2016.04.003 es_ES
dc.description.references Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032 es_ES
dc.description.references Hung, K.-S., Chung, J.-C., Liu, C.-C., & Huang, J.-M. (2017). A study of off-design performance improvement for a centrifugal refrigerant compressor. Advances in Mechanical Engineering, 9(3), 168781401769622. doi:10.1177/1687814017696224 es_ES
dc.description.references Leufvén, O., & Eriksson, L. (2014). Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios. International Journal of Engine Research, 17(2), 153-168. doi:10.1177/1468087414562456 es_ES
dc.description.references Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042 es_ES
dc.description.references Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099 es_ES
dc.description.references Casey, M., & Robinson, C. (2012). A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006590 es_ES
dc.description.references Martin, G., Talon, V., Higelin, P., Charlet, A., & Caillol, C. (2009). Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models. SAE International Journal of Engines, 2(1), 211-229. doi:10.4271/2009-01-0310 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES
dc.description.references Olmeda, P., Tiseira, A., Dolz, V., & García-Cuevas, L. M. (2015). Uncertainties in power computations in a turbocharger test bench. Measurement, 59, 363-371. doi:10.1016/j.measurement.2014.09.055 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem