- -

A zonal approach for estimating pressure ratio at compressor extreme off-design conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A zonal approach for estimating pressure ratio at compressor extreme off-design conditions

Mostrar el registro completo del ítem

Galindo, J.; Navarro, R.; García-Cuevas González, LM.; Tarí, D.; Tartoussi, H.; Guilain, S. (2019). A zonal approach for estimating pressure ratio at compressor extreme off-design conditions. International Journal of Engine Research. 20(4):393-404. https://doi.org/10.1177/1468087418754899

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156113

Ficheros en el ítem

Metadatos del ítem

Título: A zonal approach for estimating pressure ratio at compressor extreme off-design conditions
Autor: Galindo, José Navarro, Roberto García-Cuevas González, Luis Miguel Tarí, Daniel Tartoussi, H. Guilain, S.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually ...[+]
Palabras clave: Compressor map , Compression ratio , Off-design extrapolation , Mathematical model
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418754899
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087418754899
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1095/
Descripción: This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418754899
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Daniel Tari is partially supported through contract FPI-S2-2015-1095 of Programa de Apoyo ...[+]
Tipo: Artículo

References

Mezher, H., Chalet, D., Migaud, J., Raimbault, V., & Chesse, P. (2014). Wave dynamics measurement and characterization of a charge air cooler at the intake of an internal combustion engine with integration into a nonlinear code. International Journal of Engine Research, 15(6), 664-683. doi:10.1177/1468087413513584

Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., & Assanis, D. N. (2012). Thermodynamic sweet spot for high-efficiency, dilute, boosted gasoline engines. International Journal of Engine Research, 14(3), 260-278. doi:10.1177/1468087412455372

Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025 [+]
Mezher, H., Chalet, D., Migaud, J., Raimbault, V., & Chesse, P. (2014). Wave dynamics measurement and characterization of a charge air cooler at the intake of an internal combustion engine with integration into a nonlinear code. International Journal of Engine Research, 15(6), 664-683. doi:10.1177/1468087413513584

Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., & Assanis, D. N. (2012). Thermodynamic sweet spot for high-efficiency, dilute, boosted gasoline engines. International Journal of Engine Research, 14(3), 260-278. doi:10.1177/1468087412455372

Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025

Serrano, J. R., Dolz, V., Novella, R., & García, A. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: Evaluation of alternative solutions. Applied Thermal Engineering, 36, 279-287. doi:10.1016/j.applthermaleng.2011.10.024

Bousquet, Y., Carbonneau, X., Dufour, G., Binder, N., & Trebinjac, I. (2014). Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations. International Journal of Rotating Machinery, 2014, 1-11. doi:10.1155/2014/729629

Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow, 61, 245-255. doi:10.1016/j.ijheatfluidflow.2016.04.003

Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032

Hung, K.-S., Chung, J.-C., Liu, C.-C., & Huang, J.-M. (2017). A study of off-design performance improvement for a centrifugal refrigerant compressor. Advances in Mechanical Engineering, 9(3), 168781401769622. doi:10.1177/1687814017696224

Leufvén, O., & Eriksson, L. (2014). Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios. International Journal of Engine Research, 17(2), 153-168. doi:10.1177/1468087414562456

Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118

Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042

Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099

Casey, M., & Robinson, C. (2012). A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006590

Martin, G., Talon, V., Higelin, P., Charlet, A., & Caillol, C. (2009). Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models. SAE International Journal of Engines, 2(1), 211-229. doi:10.4271/2009-01-0310

Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261

Olmeda, P., Tiseira, A., Dolz, V., & García-Cuevas, L. M. (2015). Uncertainties in power computations in a turbocharger test bench. Measurement, 59, 363-371. doi:10.1016/j.measurement.2014.09.055

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem