Mezher, H., Chalet, D., Migaud, J., Raimbault, V., & Chesse, P. (2014). Wave dynamics measurement and characterization of a charge air cooler at the intake of an internal combustion engine with integration into a nonlinear code. International Journal of Engine Research, 15(6), 664-683. doi:10.1177/1468087413513584
Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., & Assanis, D. N. (2012). Thermodynamic sweet spot for high-efficiency, dilute, boosted gasoline engines. International Journal of Engine Research, 14(3), 260-278. doi:10.1177/1468087412455372
Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025
[+]
Mezher, H., Chalet, D., Migaud, J., Raimbault, V., & Chesse, P. (2014). Wave dynamics measurement and characterization of a charge air cooler at the intake of an internal combustion engine with integration into a nonlinear code. International Journal of Engine Research, 15(6), 664-683. doi:10.1177/1468087413513584
Lavoie, G. A., Ortiz-Soto, E., Babajimopoulos, A., Martz, J. B., & Assanis, D. N. (2012). Thermodynamic sweet spot for high-efficiency, dilute, boosted gasoline engines. International Journal of Engine Research, 14(3), 260-278. doi:10.1177/1468087412455372
Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025
Serrano, J. R., Dolz, V., Novella, R., & García, A. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 2: Evaluation of alternative solutions. Applied Thermal Engineering, 36, 279-287. doi:10.1016/j.applthermaleng.2011.10.024
Bousquet, Y., Carbonneau, X., Dufour, G., Binder, N., & Trebinjac, I. (2014). Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations. International Journal of Rotating Machinery, 2014, 1-11. doi:10.1155/2014/729629
Broatch, A., Galindo, J., Navarro, R., & García-Tíscar, J. (2016). Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. International Journal of Heat and Fluid Flow, 61, 245-255. doi:10.1016/j.ijheatfluidflow.2016.04.003
Semlitsch, B., & Mihăescu, M. (2016). Flow phenomena leading to surge in a centrifugal compressor. Energy, 103, 572-587. doi:10.1016/j.energy.2016.03.032
Hung, K.-S., Chung, J.-C., Liu, C.-C., & Huang, J.-M. (2017). A study of off-design performance improvement for a centrifugal refrigerant compressor. Advances in Mechanical Engineering, 9(3), 168781401769622. doi:10.1177/1687814017696224
Leufvén, O., & Eriksson, L. (2014). Measurement, analysis and modeling of centrifugal compressor flow for low pressure ratios. International Journal of Engine Research, 17(2), 153-168. doi:10.1177/1468087414562456
Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118
Serrano, J. R., Olmeda, P., Tiseira, A., García-Cuevas, L. M., & Lefebvre, A. (2013). Theoretical and experimental study of mechanical losses in automotive turbochargers. Energy, 55, 888-898. doi:10.1016/j.energy.2013.04.042
Galindo, J., Tiseira, A., Navarro, R., Tarí, D., & Meano, C. M. (2017). Effect of the inlet geometry on performance, surge margin and noise emission of an automotive turbocharger compressor. Applied Thermal Engineering, 110, 875-882. doi:10.1016/j.applthermaleng.2016.08.099
Casey, M., & Robinson, C. (2012). A Method to Estimate the Performance Map of a Centrifugal Compressor Stage. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006590
Martin, G., Talon, V., Higelin, P., Charlet, A., & Caillol, C. (2009). Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models. SAE International Journal of Engines, 2(1), 211-229. doi:10.4271/2009-01-0310
Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261
Olmeda, P., Tiseira, A., Dolz, V., & García-Cuevas, L. M. (2015). Uncertainties in power computations in a turbocharger test bench. Measurement, 59, 363-371. doi:10.1016/j.measurement.2014.09.055
[-]