- -

A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT)

Mostrar el registro completo del ítem

Belda, J.; Vergara Domínguez, L.; Safont Armero, G.; Salazar Afanador, A.; Parcheta, Z. (2019). A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT). Entropy. 21(8):1-18. https://doi.org/10.3390/e21080759

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156117

Ficheros en el ítem

Metadatos del ítem

Título: A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT)
Autor: Belda, Jordi Vergara Domínguez, Luís Safont Armero, Gonzalo Salazar Afanador, Addisson Parcheta, Zuzanna
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] The essential step of surrogating algorithms is phase randomizing the Fourier transform while preserving the original spectrum amplitude before computing the inverse Fourier transform. In this paper, we propose a new ...[+]
Palabras clave: Surrogates , Graph Fourier transform , Hermitian Laplacian matrix
Derechos de uso: Reconocimiento (by)
Fuente:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e21080759
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/e21080759
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/
Agradecimientos:
This research was funded by the Spanish Administration and the European Union under grant TEC2017-84743-P.
Tipo: Artículo

References

Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3-4), 346-382. doi:10.1016/s0167-2789(00)00043-9

Miralles, R., Vergara, L., Salazar, A., & Igual, J. (2008). Blind detection of nonlinearities in multiple-echo ultrasonic signals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(3), 637-647. doi:10.1109/tuffc.2008.688

Mandic, D. ., Chen, M., Gautama, T., Van Hulle, M. ., & Constantinides, A. (2008). On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2093), 1141-1160. doi:10.1098/rspa.2007.0154 [+]
Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3-4), 346-382. doi:10.1016/s0167-2789(00)00043-9

Miralles, R., Vergara, L., Salazar, A., & Igual, J. (2008). Blind detection of nonlinearities in multiple-echo ultrasonic signals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(3), 637-647. doi:10.1109/tuffc.2008.688

Mandic, D. ., Chen, M., Gautama, T., Van Hulle, M. ., & Constantinides, A. (2008). On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2093), 1141-1160. doi:10.1098/rspa.2007.0154

Rios, R. A., Small, M., & de Mello, R. F. (2015). Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series. International Journal of Bifurcation and Chaos, 25(01), 1550013. doi:10.1142/s0218127415500133

Borgnat, P., Flandrin, P., Honeine, P., Richard, C., & Xiao, J. (2010). Testing Stationarity With Surrogates: A Time-Frequency Approach. IEEE Transactions on Signal Processing, 58(7), 3459-3470. doi:10.1109/tsp.2010.2043971

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98. doi:10.1109/msp.2012.2235192

Sandryhaila, A., & Moura, J. M. F. (2013). Discrete Signal Processing on Graphs. IEEE Transactions on Signal Processing, 61(7), 1644-1656. doi:10.1109/tsp.2013.2238935

Sandryhaila, A., & Moura, J. M. F. (2014). Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure. IEEE Signal Processing Magazine, 31(5), 80-90. doi:10.1109/msp.2014.2329213

Pirondini, E., Vybornova, A., Coscia, M., & Van De Ville, D. (2016). A Spectral Method for Generating Surrogate Graph Signals. IEEE Signal Processing Letters, 23(9), 1275-1278. doi:10.1109/lsp.2016.2594072

Sandryhaila, A., & Moura, J. M. F. (2014). Discrete Signal Processing on Graphs: Frequency Analysis. IEEE Transactions on Signal Processing, 62(12), 3042-3054. doi:10.1109/tsp.2014.2321121

Shuman, D. I., Ricaud, B., & Vandergheynst, P. (2016). Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis, 40(2), 260-291. doi:10.1016/j.acha.2015.02.005

Dong, X., Thanou, D., Frossard, P., & Vandergheynst, P. (2016). Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Transactions on Signal Processing, 64(23), 6160-6173. doi:10.1109/tsp.2016.2602809

Perraudin, N., & Vandergheynst, P. (2017). Stationary Signal Processing on Graphs. IEEE Transactions on Signal Processing, 65(13), 3462-3477. doi:10.1109/tsp.2017.2690388

Yu, G., & Qu, H. (2015). Hermitian Laplacian matrix and positive of mixed graphs. Applied Mathematics and Computation, 269, 70-76. doi:10.1016/j.amc.2015.07.045

Gilbert, G. T. (1991). Positive Definite Matrices and Sylvester’s Criterion. The American Mathematical Monthly, 98(1), 44-46. doi:10.1080/00029890.1991.11995702

Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 197-198, 143-176. doi:10.1016/0024-3795(94)90486-3

Shapiro, H. (1991). A survey of canonical forms and invariants for unitary similarity. Linear Algebra and its Applications, 147, 101-167. doi:10.1016/0024-3795(91)90232-l

Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006

Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6(0), 2125-2149. doi:10.1214/12-ejs740

Baba, K., Shibata, R., & Sibuya, M. (2004). PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE. Australian <html_ent glyph=«@amp;» ascii=«&amp;»/> New Zealand Journal of Statistics, 46(4), 657-664. doi:10.1111/j.1467-842x.2004.00360.x

Chen, X., Xu, M., & Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. The Annals of Statistics, 41(6), 2994-3021. doi:10.1214/13-aos1182

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1-4), 77-94. doi:10.1016/0167-2789(92)90102-s

Schreiber, T., & Schmitz, A. (1996). Improved Surrogate Data for Nonlinearity Tests. Physical Review Letters, 77(4), 635-638. doi:10.1103/physrevlett.77.635

MAMMEN, E., NANDI, S., MAIWALD, T., & TIMMER, J. (2009). EFFECT OF JUMP DISCONTINUITY FOR PHASE-RANDOMIZED SURROGATE DATA TESTING. International Journal of Bifurcation and Chaos, 19(01), 403-408. doi:10.1142/s0218127409022968

Lucio, J. H., Valdés, R., & Rodríguez, L. R. (2012). Improvements to surrogate data methods for nonstationary time series. Physical Review E, 85(5). doi:10.1103/physreve.85.056202

Schreiber, T. (1998). Constrained Randomization of Time Series Data. Physical Review Letters, 80(10), 2105-2108. doi:10.1103/physrevlett.80.2105

Prichard, D., & Theiler, J. (1994). Generating surrogate data for time series with several simultaneously measured variables. Physical Review Letters, 73(7), 951-954. doi:10.1103/physrevlett.73.951

Belda, J., Vergara, L., Salazar, A., & Safont, G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs. Signal Processing, 148, 241-249. doi:10.1016/j.sigpro.2018.02.017

Belda, J., Vergara, L., Safont, G., & Salazar, A. (2018). Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing. Entropy, 21(1), 22. doi:10.3390/e21010022

Liao, T. W. (2008). Classification of weld flaws with imbalanced class data. Expert Systems with Applications, 35(3), 1041-1052. doi:10.1016/j.eswa.2007.08.044

Song, S.-J., & Shin, Y.-K. (2000). Eddy current flaw characterization in tubes by neural networks and finite element modeling. NDT & E International, 33(4), 233-243. doi:10.1016/s0963-8695(99)00046-8

Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. doi:10.1016/j.dss.2010.08.008

Mitra, S., & Acharya, T. (2007). Gesture Recognition: A Survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(3), 311-324. doi:10.1109/tsmcc.2007.893280

Dardas, N. H., & Georganas, N. D. (2011). Real-Time Hand Gesture Detection and Recognition Using Bag-of-Features and Support Vector Machine Techniques. IEEE Transactions on Instrumentation and Measurement, 60(11), 3592-3607. doi:10.1109/tim.2011.2161140

Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 80(4), 520-538. doi:10.1109/5.135376

Horn, A. (1954). Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix. American Journal of Mathematics, 76(3), 620. doi:10.2307/2372705

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem