Mostrar el registro sencillo del ítem
dc.contributor.author | Belda, Jordi | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Parcheta, Zuzanna | es_ES |
dc.date.accessioned | 2020-12-01T04:33:05Z | |
dc.date.available | 2020-12-01T04:33:05Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156117 | |
dc.description.abstract | [EN] The essential step of surrogating algorithms is phase randomizing the Fourier transform while preserving the original spectrum amplitude before computing the inverse Fourier transform. In this paper, we propose a new method which considers the graph Fourier transform. In this manner, much more flexibility is gained to define properties of the original graph signal which are to be preserved in the surrogates. The complex case is considered to allow unconstrained phase randomization in the transformed domain, hence we define a Hermitian Laplacian matrix that models the graph topology, whose eigenvectors form the basis of a complex graph Fourier transform. We have shown that the Hermitian Laplacian matrix may have negative eigenvalues. We also show in the paper that preserving the graph spectrum amplitude implies several invariances that can be controlled by the selected Hermitian Laplacian matrix. The interest of surrogating graph signals has been illustrated in the context of scarcity of instances in classifier training. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Administration and the European Union under grant TEC2017-84743-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Surrogates | es_ES |
dc.subject | Graph Fourier transform | es_ES |
dc.subject | Hermitian Laplacian matrix | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e21080759 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Belda, J.; Vergara Domínguez, L.; Safont Armero, G.; Salazar Afanador, A.; Parcheta, Z. (2019). A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT). Entropy. 21(8):1-18. https://doi.org/10.3390/e21080759 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e21080759 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\408015 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3-4), 346-382. doi:10.1016/s0167-2789(00)00043-9 | es_ES |
dc.description.references | Miralles, R., Vergara, L., Salazar, A., & Igual, J. (2008). Blind detection of nonlinearities in multiple-echo ultrasonic signals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55(3), 637-647. doi:10.1109/tuffc.2008.688 | es_ES |
dc.description.references | Mandic, D. ., Chen, M., Gautama, T., Van Hulle, M. ., & Constantinides, A. (2008). On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464(2093), 1141-1160. doi:10.1098/rspa.2007.0154 | es_ES |
dc.description.references | Rios, R. A., Small, M., & de Mello, R. F. (2015). Testing for Linear and Nonlinear Gaussian Processes in Nonstationary Time Series. International Journal of Bifurcation and Chaos, 25(01), 1550013. doi:10.1142/s0218127415500133 | es_ES |
dc.description.references | Borgnat, P., Flandrin, P., Honeine, P., Richard, C., & Xiao, J. (2010). Testing Stationarity With Surrogates: A Time-Frequency Approach. IEEE Transactions on Signal Processing, 58(7), 3459-3470. doi:10.1109/tsp.2010.2043971 | es_ES |
dc.description.references | Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98. doi:10.1109/msp.2012.2235192 | es_ES |
dc.description.references | Sandryhaila, A., & Moura, J. M. F. (2013). Discrete Signal Processing on Graphs. IEEE Transactions on Signal Processing, 61(7), 1644-1656. doi:10.1109/tsp.2013.2238935 | es_ES |
dc.description.references | Sandryhaila, A., & Moura, J. M. F. (2014). Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive data sets with irregular structure. IEEE Signal Processing Magazine, 31(5), 80-90. doi:10.1109/msp.2014.2329213 | es_ES |
dc.description.references | Pirondini, E., Vybornova, A., Coscia, M., & Van De Ville, D. (2016). A Spectral Method for Generating Surrogate Graph Signals. IEEE Signal Processing Letters, 23(9), 1275-1278. doi:10.1109/lsp.2016.2594072 | es_ES |
dc.description.references | Sandryhaila, A., & Moura, J. M. F. (2014). Discrete Signal Processing on Graphs: Frequency Analysis. IEEE Transactions on Signal Processing, 62(12), 3042-3054. doi:10.1109/tsp.2014.2321121 | es_ES |
dc.description.references | Shuman, D. I., Ricaud, B., & Vandergheynst, P. (2016). Vertex-frequency analysis on graphs. Applied and Computational Harmonic Analysis, 40(2), 260-291. doi:10.1016/j.acha.2015.02.005 | es_ES |
dc.description.references | Dong, X., Thanou, D., Frossard, P., & Vandergheynst, P. (2016). Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Transactions on Signal Processing, 64(23), 6160-6173. doi:10.1109/tsp.2016.2602809 | es_ES |
dc.description.references | Perraudin, N., & Vandergheynst, P. (2017). Stationary Signal Processing on Graphs. IEEE Transactions on Signal Processing, 65(13), 3462-3477. doi:10.1109/tsp.2017.2690388 | es_ES |
dc.description.references | Yu, G., & Qu, H. (2015). Hermitian Laplacian matrix and positive of mixed graphs. Applied Mathematics and Computation, 269, 70-76. doi:10.1016/j.amc.2015.07.045 | es_ES |
dc.description.references | Gilbert, G. T. (1991). Positive Definite Matrices and Sylvester’s Criterion. The American Mathematical Monthly, 98(1), 44-46. doi:10.1080/00029890.1991.11995702 | es_ES |
dc.description.references | Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 197-198, 143-176. doi:10.1016/0024-3795(94)90486-3 | es_ES |
dc.description.references | Shapiro, H. (1991). A survey of canonical forms and invariants for unitary similarity. Linear Algebra and its Applications, 147, 101-167. doi:10.1016/0024-3795(91)90232-l | es_ES |
dc.description.references | Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006 | es_ES |
dc.description.references | Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6(0), 2125-2149. doi:10.1214/12-ejs740 | es_ES |
dc.description.references | Baba, K., Shibata, R., & Sibuya, M. (2004). PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE. Australian <html_ent glyph=«@amp;» ascii=«&»/> New Zealand Journal of Statistics, 46(4), 657-664. doi:10.1111/j.1467-842x.2004.00360.x | es_ES |
dc.description.references | Chen, X., Xu, M., & Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. The Annals of Statistics, 41(6), 2994-3021. doi:10.1214/13-aos1182 | es_ES |
dc.description.references | Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1-4), 77-94. doi:10.1016/0167-2789(92)90102-s | es_ES |
dc.description.references | Schreiber, T., & Schmitz, A. (1996). Improved Surrogate Data for Nonlinearity Tests. Physical Review Letters, 77(4), 635-638. doi:10.1103/physrevlett.77.635 | es_ES |
dc.description.references | MAMMEN, E., NANDI, S., MAIWALD, T., & TIMMER, J. (2009). EFFECT OF JUMP DISCONTINUITY FOR PHASE-RANDOMIZED SURROGATE DATA TESTING. International Journal of Bifurcation and Chaos, 19(01), 403-408. doi:10.1142/s0218127409022968 | es_ES |
dc.description.references | Lucio, J. H., Valdés, R., & Rodríguez, L. R. (2012). Improvements to surrogate data methods for nonstationary time series. Physical Review E, 85(5). doi:10.1103/physreve.85.056202 | es_ES |
dc.description.references | Schreiber, T. (1998). Constrained Randomization of Time Series Data. Physical Review Letters, 80(10), 2105-2108. doi:10.1103/physrevlett.80.2105 | es_ES |
dc.description.references | Prichard, D., & Theiler, J. (1994). Generating surrogate data for time series with several simultaneously measured variables. Physical Review Letters, 73(7), 951-954. doi:10.1103/physrevlett.73.951 | es_ES |
dc.description.references | Belda, J., Vergara, L., Salazar, A., & Safont, G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs. Signal Processing, 148, 241-249. doi:10.1016/j.sigpro.2018.02.017 | es_ES |
dc.description.references | Belda, J., Vergara, L., Safont, G., & Salazar, A. (2018). Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing. Entropy, 21(1), 22. doi:10.3390/e21010022 | es_ES |
dc.description.references | Liao, T. W. (2008). Classification of weld flaws with imbalanced class data. Expert Systems with Applications, 35(3), 1041-1052. doi:10.1016/j.eswa.2007.08.044 | es_ES |
dc.description.references | Song, S.-J., & Shin, Y.-K. (2000). Eddy current flaw characterization in tubes by neural networks and finite element modeling. NDT & E International, 33(4), 233-243. doi:10.1016/s0963-8695(99)00046-8 | es_ES |
dc.description.references | Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. doi:10.1016/j.dss.2010.08.008 | es_ES |
dc.description.references | Mitra, S., & Acharya, T. (2007). Gesture Recognition: A Survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(3), 311-324. doi:10.1109/tsmcc.2007.893280 | es_ES |
dc.description.references | Dardas, N. H., & Georganas, N. D. (2011). Real-Time Hand Gesture Detection and Recognition Using Bag-of-Features and Support Vector Machine Techniques. IEEE Transactions on Instrumentation and Measurement, 60(11), 3592-3607. doi:10.1109/tim.2011.2161140 | es_ES |
dc.description.references | Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 80(4), 520-538. doi:10.1109/5.135376 | es_ES |
dc.description.references | Horn, A. (1954). Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix. American Journal of Mathematics, 76(3), 620. doi:10.2307/2372705 | es_ES |