- -

On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aineto, Diego es_ES
dc.contributor.author Iranzo-Sánchez, Javier es_ES
dc.contributor.author Lemus Zúñiga, Lenin Guillermo es_ES
dc.contributor.author Onaindia De La Rivaherrera, Eva es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2020-12-02T04:30:49Z
dc.date.available 2020-12-02T04:30:49Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156254
dc.description.abstract [EN] The mainstream of EU policies is heading towards the conversion of the nowadays electricity consumer into the future electricity prosumer (producer and consumer) in markets in which the production of electricity will be more local, renewable and economically efficient. One key component of a local short-term and medium-term planning tool to enable actors to efficiently interact in the electric pool markets is the ability to predict and decide on forecast prices. Given the progressively more important role of renewable production in local markets, we analyze the influence of renewable energy production on the electricity price in the Iberian market through historical records. The dependencies discovered in this analysis will serve to identify the forecasts to use as explanatory variables for an electricity price forecasting model based on recurrent neural networks. The results will show the wide impact of using forecasted renewable energy production in the price forecasting. es_ES
dc.description.sponsorship This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electricity market es_ES
dc.subject Electricity price forecasting es_ES
dc.subject Day-ahead market es_ES
dc.subject Recurrent neural networks es_ES
dc.subject Renewable energies es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12112082 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Aineto, D.; Iranzo-Sánchez, J.; Lemus Zúñiga, LG.; Onaindia De La Rivaherrera, E.; Urchueguía Schölzel, JF. (2019). On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market. Energies. 12(11):1-20. https://doi.org/10.3390/en12112082 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12112082 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\388899 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Conference of the Parties, Framework Convention on Climate Change, U.N. Adoption of the Paris Agreementhttps://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf es_ES
dc.description.references European Commission 2018—Vision for a Long-Term EU Strategy for Reducting Greenhouse Gas Emissionshttps://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1 es_ES
dc.description.references Common Vision for the Renewable Heating and Cooling Sector in Europe: 2020–2030–2050 of the Renewable Heating and Cooling Technology and Innovation Platformhttp://www.rhc-platform.org/publications/ es_ES
dc.description.references Operador del Mercado Ibérico de Energía—Polo Español—Resultados de mercadohttp://www.omie.es/aplicaciones/datosftp/datosftp.jsp?path= es_ES
dc.description.references García-Martos, C., Caro, E., & Jesús Sánchez, M. (2015). Electricity price forecasting accounting for renewable energies: optimal combined forecasts. Journal of the Operational Research Society, 66(5), 871-884. doi:10.1057/jors.2013.177 es_ES
dc.description.references Grossi, L., & Nan, F. (2019). Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technological Forecasting and Social Change, 141, 305-318. doi:10.1016/j.techfore.2019.01.006 es_ES
dc.description.references Madani, K., & Lund, J. R. (2009). Estimated impacts of climate warming on California’s high-elevation hydropower. Climatic Change, 102(3-4), 521-538. doi:10.1007/s10584-009-9750-8 es_ES
dc.description.references Moemken, J., Reyers, M., Feldmann, H., & Pinto, J. G. (2018). Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123(12), 6373-6389. doi:10.1029/2018jd028473 es_ES
dc.description.references Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., … Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6(1). doi:10.1038/ncomms10014 es_ES
dc.description.references Martiradonna, L. (2016). Robust against climate change. Nature Materials, 15(2), 127-127. doi:10.1038/nmat4559 es_ES
dc.description.references Mideksa, T. K., & Kallbekken, S. (2010). The impact of climate change on the electricity market: A review. Energy Policy, 38(7), 3579-3585. doi:10.1016/j.enpol.2010.02.035 es_ES
dc.description.references Golombek, R., Kittelsen, S. A. C., & Haddeland, I. (2011). Climate change: impacts on electricity markets in Western Europe. Climatic Change, 113(2), 357-370. doi:10.1007/s10584-011-0348-6 es_ES
dc.description.references Giulietti, M., Grossi, L., Trujillo Baute, E., & Waterson, M. (2018). Analyzing the Potential Economic Value of Energy Storage. The Energy Journal, 39(01). doi:10.5547/01956574.39.si1.mgiu es_ES
dc.description.references Borenstein, S. (2012). The Private and Public Economics of Renewable Electricity Generation. Journal of Economic Perspectives, 26(1), 67-92. doi:10.1257/jep.26.1.67 es_ES
dc.description.references Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems, 31(1), 13-22. doi:10.1016/j.ijepes.2008.09.003 es_ES
dc.description.references Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105. doi:10.1016/j.rser.2018.02.007 es_ES
dc.description.references Woo, C. K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on the electricity spot-market price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944. doi:10.1016/j.enpol.2011.03.084 es_ES
dc.description.references Brancucci Martinez-Anido, C., Brinkman, G., & Hodge, B.-M. (2016). The impact of wind power on electricity prices. Renewable Energy, 94, 474-487. doi:10.1016/j.renene.2016.03.053 es_ES
dc.description.references Paraschiv, F., Erni, D., & Pietsch, R. (2014). The impact of renewable energies on EEX day-ahead electricity prices. Energy Policy, 73, 196-210. doi:10.1016/j.enpol.2014.05.004 es_ES
dc.description.references Milstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70-90. doi:10.1016/j.reseneeco.2015.04.001 es_ES
dc.description.references Mulder, M., & Scholtens, B. (2013). The impact of renewable energy on electricity prices in the Netherlands. Renewable Energy, 57, 94-100. doi:10.1016/j.renene.2013.01.025 es_ES
dc.description.references Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008 es_ES
dc.description.references Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943 es_ES
dc.description.references Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5 es_ES
dc.description.references Conejo, A. J., Contreras, J., Espínola, R., & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 21(3), 435-462. doi:10.1016/j.ijforecast.2004.12.005 es_ES
dc.description.references Misiorek, A., Trueck, S., & Weron, R. (2006). Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1362 es_ES
dc.description.references Garcia, R. C., Contreras, J., vanAkkeren, M., & Garcia, J. B. C. (2005). A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 20(2), 867-874. doi:10.1109/tpwrs.2005.846044 es_ES
dc.description.references Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297-1304. doi:10.1016/j.epsr.2006.09.022 es_ES
dc.description.references Monteiro, C., Fernandez-Jimenez, L., & Ramirez-Rosado, I. (2015). Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market. Energies, 8(9), 10464-10486. doi:10.3390/en80910464 es_ES
dc.description.references González, C., Mira‐McWilliams, J., & Juárez, I. (2015). Important variable assessment and electricity price forecasting based on regression tree models: classification and regression trees, Bagging and Random Forests. IET Generation, Transmission & Distribution, 9(11), 1120-1128. doi:10.1049/iet-gtd.2014.0655 es_ES
dc.description.references Anbazhagan, S., & Kumarappan, N. (2013). Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network. IEEE Systems Journal, 7(4), 866-872. doi:10.1109/jsyst.2012.2225733 es_ES
dc.description.references Sharma, V., & Srinivasan, D. (2013). A hybrid intelligent model based on recurrent neural networks and excitable dynamics for price prediction in deregulated electricity market. Engineering Applications of Artificial Intelligence, 26(5-6), 1562-1574. doi:10.1016/j.engappai.2012.12.012 es_ES
dc.description.references Kuo, P.-H., & Huang, C.-J. (2018). An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability, 10(4), 1280. doi:10.3390/su10041280 es_ES
dc.description.references Pórtoles, J., González, C., & Moguerza, J. (2018). Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies, 11(6), 1588. doi:10.3390/en11061588 es_ES
dc.description.references EUPHEMIA Public Description - PCR Market Coupling Algorithmhttp://m.omie.es/files/16_11_28_Euphemia%20Public%20Description.pdf?m=yes es_ES
dc.description.references Real Decreto 1578/2008, de 26 de Septiembre, de Retribución de la Actividad de Producción de Energía Eléctrica Mediante Tecnología Solar Fotovoltaica para Instalaciones Posteriores a la Fecha Límite de Mantenimiento de la Retribución del Real Decreto 661/2007, de 25 de mayo, para Dicha Tecnologíahttps://www.boe.es/boe/dias/2008/09/27/pdfs/A39117-39125.pdf es_ES
dc.description.references Real Decreto 244/2019, de 5 de abril, por el que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctricahttps://www.boe.es/boe/dias/2019/04/06/pdfs/BOE-A-2019-5089.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem