Mostrar el registro sencillo del ítem
dc.contributor.author | Aineto, Diego | es_ES |
dc.contributor.author | Iranzo-Sánchez, Javier | es_ES |
dc.contributor.author | Lemus Zúñiga, Lenin Guillermo | es_ES |
dc.contributor.author | Onaindia De La Rivaherrera, Eva | es_ES |
dc.contributor.author | Urchueguía Schölzel, Javier Fermín | es_ES |
dc.date.accessioned | 2020-12-02T04:30:49Z | |
dc.date.available | 2020-12-02T04:30:49Z | |
dc.date.issued | 2019-06-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156254 | |
dc.description.abstract | [EN] The mainstream of EU policies is heading towards the conversion of the nowadays electricity consumer into the future electricity prosumer (producer and consumer) in markets in which the production of electricity will be more local, renewable and economically efficient. One key component of a local short-term and medium-term planning tool to enable actors to efficiently interact in the electric pool markets is the ability to predict and decide on forecast prices. Given the progressively more important role of renewable production in local markets, we analyze the influence of renewable energy production on the electricity price in the Iberian market through historical records. The dependencies discovered in this analysis will serve to identify the forecasts to use as explanatory variables for an electricity price forecasting model based on recurrent neural networks. The results will show the wide impact of using forecasted renewable energy production in the price forecasting. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electricity market | es_ES |
dc.subject | Electricity price forecasting | es_ES |
dc.subject | Day-ahead market | es_ES |
dc.subject | Recurrent neural networks | es_ES |
dc.subject | Renewable energies | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en12112082 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Aineto, D.; Iranzo-Sánchez, J.; Lemus Zúñiga, LG.; Onaindia De La Rivaherrera, E.; Urchueguía Schölzel, JF. (2019). On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market. Energies. 12(11):1-20. https://doi.org/10.3390/en12112082 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en12112082 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\388899 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Conference of the Parties, Framework Convention on Climate Change, U.N. Adoption of the Paris Agreementhttps://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf | es_ES |
dc.description.references | European Commission 2018—Vision for a Long-Term EU Strategy for Reducting Greenhouse Gas Emissionshttps://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1 | es_ES |
dc.description.references | Common Vision for the Renewable Heating and Cooling Sector in Europe: 2020–2030–2050 of the Renewable Heating and Cooling Technology and Innovation Platformhttp://www.rhc-platform.org/publications/ | es_ES |
dc.description.references | Operador del Mercado Ibérico de Energía—Polo Español—Resultados de mercadohttp://www.omie.es/aplicaciones/datosftp/datosftp.jsp?path= | es_ES |
dc.description.references | García-Martos, C., Caro, E., & Jesús Sánchez, M. (2015). Electricity price forecasting accounting for renewable energies: optimal combined forecasts. Journal of the Operational Research Society, 66(5), 871-884. doi:10.1057/jors.2013.177 | es_ES |
dc.description.references | Grossi, L., & Nan, F. (2019). Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technological Forecasting and Social Change, 141, 305-318. doi:10.1016/j.techfore.2019.01.006 | es_ES |
dc.description.references | Madani, K., & Lund, J. R. (2009). Estimated impacts of climate warming on California’s high-elevation hydropower. Climatic Change, 102(3-4), 521-538. doi:10.1007/s10584-009-9750-8 | es_ES |
dc.description.references | Moemken, J., Reyers, M., Feldmann, H., & Pinto, J. G. (2018). Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123(12), 6373-6389. doi:10.1029/2018jd028473 | es_ES |
dc.description.references | Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., … Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6(1). doi:10.1038/ncomms10014 | es_ES |
dc.description.references | Martiradonna, L. (2016). Robust against climate change. Nature Materials, 15(2), 127-127. doi:10.1038/nmat4559 | es_ES |
dc.description.references | Mideksa, T. K., & Kallbekken, S. (2010). The impact of climate change on the electricity market: A review. Energy Policy, 38(7), 3579-3585. doi:10.1016/j.enpol.2010.02.035 | es_ES |
dc.description.references | Golombek, R., Kittelsen, S. A. C., & Haddeland, I. (2011). Climate change: impacts on electricity markets in Western Europe. Climatic Change, 113(2), 357-370. doi:10.1007/s10584-011-0348-6 | es_ES |
dc.description.references | Giulietti, M., Grossi, L., Trujillo Baute, E., & Waterson, M. (2018). Analyzing the Potential Economic Value of Energy Storage. The Energy Journal, 39(01). doi:10.5547/01956574.39.si1.mgiu | es_ES |
dc.description.references | Borenstein, S. (2012). The Private and Public Economics of Renewable Electricity Generation. Journal of Economic Perspectives, 26(1), 67-92. doi:10.1257/jep.26.1.67 | es_ES |
dc.description.references | Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems, 31(1), 13-22. doi:10.1016/j.ijepes.2008.09.003 | es_ES |
dc.description.references | Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105. doi:10.1016/j.rser.2018.02.007 | es_ES |
dc.description.references | Woo, C. K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on the electricity spot-market price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944. doi:10.1016/j.enpol.2011.03.084 | es_ES |
dc.description.references | Brancucci Martinez-Anido, C., Brinkman, G., & Hodge, B.-M. (2016). The impact of wind power on electricity prices. Renewable Energy, 94, 474-487. doi:10.1016/j.renene.2016.03.053 | es_ES |
dc.description.references | Paraschiv, F., Erni, D., & Pietsch, R. (2014). The impact of renewable energies on EEX day-ahead electricity prices. Energy Policy, 73, 196-210. doi:10.1016/j.enpol.2014.05.004 | es_ES |
dc.description.references | Milstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70-90. doi:10.1016/j.reseneeco.2015.04.001 | es_ES |
dc.description.references | Mulder, M., & Scholtens, B. (2013). The impact of renewable energy on electricity prices in the Netherlands. Renewable Energy, 57, 94-100. doi:10.1016/j.renene.2013.01.025 | es_ES |
dc.description.references | Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008 | es_ES |
dc.description.references | Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943 | es_ES |
dc.description.references | Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5 | es_ES |
dc.description.references | Conejo, A. J., Contreras, J., Espínola, R., & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 21(3), 435-462. doi:10.1016/j.ijforecast.2004.12.005 | es_ES |
dc.description.references | Misiorek, A., Trueck, S., & Weron, R. (2006). Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1362 | es_ES |
dc.description.references | Garcia, R. C., Contreras, J., vanAkkeren, M., & Garcia, J. B. C. (2005). A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 20(2), 867-874. doi:10.1109/tpwrs.2005.846044 | es_ES |
dc.description.references | Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297-1304. doi:10.1016/j.epsr.2006.09.022 | es_ES |
dc.description.references | Monteiro, C., Fernandez-Jimenez, L., & Ramirez-Rosado, I. (2015). Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market. Energies, 8(9), 10464-10486. doi:10.3390/en80910464 | es_ES |
dc.description.references | González, C., Mira‐McWilliams, J., & Juárez, I. (2015). Important variable assessment and electricity price forecasting based on regression tree models: classification and regression trees, Bagging and Random Forests. IET Generation, Transmission & Distribution, 9(11), 1120-1128. doi:10.1049/iet-gtd.2014.0655 | es_ES |
dc.description.references | Anbazhagan, S., & Kumarappan, N. (2013). Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network. IEEE Systems Journal, 7(4), 866-872. doi:10.1109/jsyst.2012.2225733 | es_ES |
dc.description.references | Sharma, V., & Srinivasan, D. (2013). A hybrid intelligent model based on recurrent neural networks and excitable dynamics for price prediction in deregulated electricity market. Engineering Applications of Artificial Intelligence, 26(5-6), 1562-1574. doi:10.1016/j.engappai.2012.12.012 | es_ES |
dc.description.references | Kuo, P.-H., & Huang, C.-J. (2018). An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability, 10(4), 1280. doi:10.3390/su10041280 | es_ES |
dc.description.references | Pórtoles, J., González, C., & Moguerza, J. (2018). Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies, 11(6), 1588. doi:10.3390/en11061588 | es_ES |
dc.description.references | EUPHEMIA Public Description - PCR Market Coupling Algorithmhttp://m.omie.es/files/16_11_28_Euphemia%20Public%20Description.pdf?m=yes | es_ES |
dc.description.references | Real Decreto 1578/2008, de 26 de Septiembre, de Retribución de la Actividad de Producción de Energía Eléctrica Mediante Tecnología Solar Fotovoltaica para Instalaciones Posteriores a la Fecha Límite de Mantenimiento de la Retribución del Real Decreto 661/2007, de 25 de mayo, para Dicha Tecnologíahttps://www.boe.es/boe/dias/2008/09/27/pdfs/A39117-39125.pdf | es_ES |
dc.description.references | Real Decreto 244/2019, de 5 de abril, por el que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctricahttps://www.boe.es/boe/dias/2019/04/06/pdfs/BOE-A-2019-5089.pdf | es_ES |