- -

On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market

Mostrar el registro completo del ítem

Aineto, D.; Iranzo-Sánchez, J.; Lemus Zúñiga, LG.; Onaindia De La Rivaherrera, E.; Urchueguía Schölzel, JF. (2019). On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market. Energies. 12(11):1-20. https://doi.org/10.3390/en12112082

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156254

Ficheros en el ítem

Metadatos del ítem

Título: On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market
Autor: Aineto, Diego Iranzo-Sánchez, Javier Lemus Zúñiga, Lenin Guillermo Onaindia De La Rivaherrera, Eva Urchueguía Schölzel, Javier Fermín
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The mainstream of EU policies is heading towards the conversion of the nowadays electricity consumer into the future electricity prosumer (producer and consumer) in markets in which the production of electricity will ...[+]
Palabras clave: Electricity market , Electricity price forecasting , Day-ahead market , Recurrent neural networks , Renewable energies
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en12112082
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/en12112082
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU16%2F03184/ES/FPU16%2F03184/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88476-C2-1-R/ES/RECONOCIMIENTO DE ACTIVIDADES Y PLANIFICACION AUTOMATICA PARA EL DISEÑO DE ASISTENTES INTELIGENTES/
Agradecimientos:
This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184.
Tipo: Artículo

References

Conference of the Parties, Framework Convention on Climate Change, U.N. Adoption of the Paris Agreementhttps://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

European Commission 2018—Vision for a Long-Term EU Strategy for Reducting Greenhouse Gas Emissionshttps://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1

Common Vision for the Renewable Heating and Cooling Sector in Europe: 2020–2030–2050 of the Renewable Heating and Cooling Technology and Innovation Platformhttp://www.rhc-platform.org/publications/ [+]
Conference of the Parties, Framework Convention on Climate Change, U.N. Adoption of the Paris Agreementhttps://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

European Commission 2018—Vision for a Long-Term EU Strategy for Reducting Greenhouse Gas Emissionshttps://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1

Common Vision for the Renewable Heating and Cooling Sector in Europe: 2020–2030–2050 of the Renewable Heating and Cooling Technology and Innovation Platformhttp://www.rhc-platform.org/publications/

Operador del Mercado Ibérico de Energía—Polo Español—Resultados de mercadohttp://www.omie.es/aplicaciones/datosftp/datosftp.jsp?path=

García-Martos, C., Caro, E., & Jesús Sánchez, M. (2015). Electricity price forecasting accounting for renewable energies: optimal combined forecasts. Journal of the Operational Research Society, 66(5), 871-884. doi:10.1057/jors.2013.177

Grossi, L., & Nan, F. (2019). Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technological Forecasting and Social Change, 141, 305-318. doi:10.1016/j.techfore.2019.01.006

Madani, K., & Lund, J. R. (2009). Estimated impacts of climate warming on California’s high-elevation hydropower. Climatic Change, 102(3-4), 521-538. doi:10.1007/s10584-009-9750-8

Moemken, J., Reyers, M., Feldmann, H., & Pinto, J. G. (2018). Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123(12), 6373-6389. doi:10.1029/2018jd028473

Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., … Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6(1). doi:10.1038/ncomms10014

Martiradonna, L. (2016). Robust against climate change. Nature Materials, 15(2), 127-127. doi:10.1038/nmat4559

Mideksa, T. K., & Kallbekken, S. (2010). The impact of climate change on the electricity market: A review. Energy Policy, 38(7), 3579-3585. doi:10.1016/j.enpol.2010.02.035

Golombek, R., Kittelsen, S. A. C., & Haddeland, I. (2011). Climate change: impacts on electricity markets in Western Europe. Climatic Change, 113(2), 357-370. doi:10.1007/s10584-011-0348-6

Giulietti, M., Grossi, L., Trujillo Baute, E., & Waterson, M. (2018). Analyzing the Potential Economic Value of Energy Storage. The Energy Journal, 39(01). doi:10.5547/01956574.39.si1.mgiu

Borenstein, S. (2012). The Private and Public Economics of Renewable Electricity Generation. Journal of Economic Perspectives, 26(1), 67-92. doi:10.1257/jep.26.1.67

Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems, 31(1), 13-22. doi:10.1016/j.ijepes.2008.09.003

Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105. doi:10.1016/j.rser.2018.02.007

Woo, C. K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on the electricity spot-market price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944. doi:10.1016/j.enpol.2011.03.084

Brancucci Martinez-Anido, C., Brinkman, G., & Hodge, B.-M. (2016). The impact of wind power on electricity prices. Renewable Energy, 94, 474-487. doi:10.1016/j.renene.2016.03.053

Paraschiv, F., Erni, D., & Pietsch, R. (2014). The impact of renewable energies on EEX day-ahead electricity prices. Energy Policy, 73, 196-210. doi:10.1016/j.enpol.2014.05.004

Milstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70-90. doi:10.1016/j.reseneeco.2015.04.001

Mulder, M., & Scholtens, B. (2013). The impact of renewable energy on electricity prices in the Netherlands. Renewable Energy, 57, 94-100. doi:10.1016/j.renene.2013.01.025

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008

Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943

Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5

Conejo, A. J., Contreras, J., Espínola, R., & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 21(3), 435-462. doi:10.1016/j.ijforecast.2004.12.005

Misiorek, A., Trueck, S., & Weron, R. (2006). Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1362

Garcia, R. C., Contreras, J., vanAkkeren, M., & Garcia, J. B. C. (2005). A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 20(2), 867-874. doi:10.1109/tpwrs.2005.846044

Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297-1304. doi:10.1016/j.epsr.2006.09.022

Monteiro, C., Fernandez-Jimenez, L., & Ramirez-Rosado, I. (2015). Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market. Energies, 8(9), 10464-10486. doi:10.3390/en80910464

González, C., Mira‐McWilliams, J., & Juárez, I. (2015). Important variable assessment and electricity price forecasting based on regression tree models: classification and regression trees, Bagging and Random Forests. IET Generation, Transmission & Distribution, 9(11), 1120-1128. doi:10.1049/iet-gtd.2014.0655

Anbazhagan, S., & Kumarappan, N. (2013). Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network. IEEE Systems Journal, 7(4), 866-872. doi:10.1109/jsyst.2012.2225733

Sharma, V., & Srinivasan, D. (2013). A hybrid intelligent model based on recurrent neural networks and excitable dynamics for price prediction in deregulated electricity market. Engineering Applications of Artificial Intelligence, 26(5-6), 1562-1574. doi:10.1016/j.engappai.2012.12.012

Kuo, P.-H., & Huang, C.-J. (2018). An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability, 10(4), 1280. doi:10.3390/su10041280

Pórtoles, J., González, C., & Moguerza, J. (2018). Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies, 11(6), 1588. doi:10.3390/en11061588

EUPHEMIA Public Description - PCR Market Coupling Algorithmhttp://m.omie.es/files/16_11_28_Euphemia%20Public%20Description.pdf?m=yes

Real Decreto 1578/2008, de 26 de Septiembre, de Retribución de la Actividad de Producción de Energía Eléctrica Mediante Tecnología Solar Fotovoltaica para Instalaciones Posteriores a la Fecha Límite de Mantenimiento de la Retribución del Real Decreto 661/2007, de 25 de mayo, para Dicha Tecnologíahttps://www.boe.es/boe/dias/2008/09/27/pdfs/A39117-39125.pdf

Real Decreto 244/2019, de 5 de abril, por el que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctricahttps://www.boe.es/boe/dias/2019/04/06/pdfs/BOE-A-2019-5089.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem