- -

Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings

Show full item record

Robledo-Fava, R.; Hernández-Luna, MC.; Fernández De Córdoba, P.; Michinel, H.; Zaragoza, S.; Castillo-Guzman, A.; Selvas-Aguilar, R. (2019). Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings. Energies. 12(8):1-23. https://doi.org/10.3390/en12081531

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156257

Files in this item

Item Metadata

Title: Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings
Author: Robledo-Fava, Roberto Hernández-Luna, Monica C. Fernández de Córdoba, Pedro Michinel, Humberto Zaragoza, Sonia Castillo-Guzman, A. Selvas-Aguilar, Romeo
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In the present work, we analyze the influence of the designer's choice of values for the human metabolic index (met) and insulation by clothing (clo) that can be selected within the ISO 7730 for the calculation of the ...[+]
Subjects: Monte Carlo method , ISO 7730 , TRNSYS
Copyrigths: Reconocimiento (by)
Source:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en12081531
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/en12081531
Project ID:
MINECO/MAT2017-86453-R
...[+]
MINECO/MAT2017-86453-R
MINECO/FIS2017-83762-P
CONACYT/298503
CONACYT/296471
CONACYT/INFRA-187906
MINISTERIO DE ECONOMIA Y EMPRESA/ENE2015-71333-R
[-]
Thanks:
This work was partially funded by grants OHMERA MAT2017-86453-R, FIS2017-83762-P and ENE2015-71333-R from MINECO (Spain). R. Robledo and M. Hernandez were supported by CONACYT grants 298503 and 296471, respectively. We ...[+]
Type: Artículo

References

Hemsath, T. L., & Alagheband Bandhosseini, K. (2015). Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-538. doi:10.1016/j.renene.2014.11.044

Griego, D., Krarti, M., & Hernandez-Guerrero, A. (2015). Energy efficiency optimization of new and existing office buildings in Guanajuato, Mexico. Sustainable Cities and Society, 17, 132-140. doi:10.1016/j.scs.2015.04.008

Lin, H.-W., & Hong, T. (2013). On variations of space-heating energy use in office buildings. Applied Energy, 111, 515-528. doi:10.1016/j.apenergy.2013.05.040 [+]
Hemsath, T. L., & Alagheband Bandhosseini, K. (2015). Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-538. doi:10.1016/j.renene.2014.11.044

Griego, D., Krarti, M., & Hernandez-Guerrero, A. (2015). Energy efficiency optimization of new and existing office buildings in Guanajuato, Mexico. Sustainable Cities and Society, 17, 132-140. doi:10.1016/j.scs.2015.04.008

Lin, H.-W., & Hong, T. (2013). On variations of space-heating energy use in office buildings. Applied Energy, 111, 515-528. doi:10.1016/j.apenergy.2013.05.040

Pikas, E., Thalfeldt, M., & Kurnitski, J. (2014). Cost optimal and nearly zero energy building solutions for office buildings. Energy and Buildings, 74, 30-42. doi:10.1016/j.enbuild.2014.01.039

Terés-Zubiaga, J., Campos-Celador, A., González-Pino, I., & Escudero-Revilla, C. (2015). Energy and economic assessment of the envelope retrofitting in residential buildings in Northern Spain. Energy and Buildings, 86, 194-202. doi:10.1016/j.enbuild.2014.10.018

Lee, J., Kim, J., Song, D., Kim, J., & Jang, C. (2017). Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews, 75, 1081-1088. doi:10.1016/j.rser.2016.11.087

Anderson, J. E., Wulfhorst, G., & Lang, W. (2015). Energy analysis of the built environment—A review and outlook. Renewable and Sustainable Energy Reviews, 44, 149-158. doi:10.1016/j.rser.2014.12.027

Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150-168. doi:10.1016/j.rser.2010.09.003

Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Abd. Majid, M. Z. (2015). A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862. doi:10.1016/j.rser.2014.11.066

Balaras, C. A., Droutsa, K., Dascalaki, E., & Kontoyiannidis, S. (2005). Heating energy consumption and resulting environmental impact of European apartment buildings. Energy and Buildings, 37(5), 429-442. doi:10.1016/j.enbuild.2004.08.003

Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007

Galvin, R. (2010). Thermal upgrades of existing homes in Germany: The building code, subsidies, and economic efficiency. Energy and Buildings, 42(6), 834-844. doi:10.1016/j.enbuild.2009.12.004

Reducing US Greenhouse Gas Emissions: How Much at What Cost?: US Greenhouse Gas Abatement Mapping Initiative https://www.mckinsey.com/business-functions/sustainability/our-insights/reducing-us-greenhouse-gas-emissions

Chappells †, H., & Shove ‡, E. (2005). Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment. Building Research & Information, 33(1), 32-40. doi:10.1080/0961321042000322762

Geva, A., Saaroni, H., & Morris, J. (2013). Measurements and simulations of thermal comfort: a synagogue in Tel Aviv, Israel. Journal of Building Performance Simulation, 7(3), 233-250. doi:10.1080/19401493.2013.819530

Nguyen, A. T., & Reiter, S. (2013). Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria. Journal of Building Performance Simulation, 7(1), 68-81. doi:10.1080/19401493.2013.770067

Rey Martínez, F. J., Chicote, M. A., Peñalver, A. V., Gónzalez, A. T., & Gómez, E. V. (2015). Indoor air quality and thermal comfort evaluation in a Spanish modern low-energy office with thermally activated building systems. Science and Technology for the Built Environment, 21(8), 1091-1099. doi:10.1080/23744731.2015.1056655

Wardiningsih, W., & Troynikov, O. (2017). Force attenuation capacity and thermophysiological wear comfort of vertically lapped nonwoven fabric. The Journal of The Textile Institute, 109(8), 1035-1043. doi:10.1080/00405000.2017.1398624

Oropeza-Perez, I., Petzold-Rodriguez, A. H., & Bonilla-Lopez, C. (2017). Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy and Buildings, 145, 251-258. doi:10.1016/j.enbuild.2017.04.031

Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84. doi:10.1007/s004840050119

Peeters, L., Dear, R. de, Hensen, J., & D’haeseleer, W. (2009). Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 86(5), 772-780. doi:10.1016/j.apenergy.2008.07.011

Ahmed, K., Akhondzada, A., Kurnitski, J., & Olesen, B. (2017). Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards. Sustainable Cities and Society, 35, 134-144. doi:10.1016/j.scs.2017.07.010

Antoniadou, P., & Papadopoulos, A. M. (2017). Occupants’ thermal comfort: State of the art and the prospects of personalized assessment in office buildings. Energy and Buildings, 153, 136-149. doi:10.1016/j.enbuild.2017.08.001

Oropeza-Perez, I., & Østergaard, P. A. (2014). Potential of natural ventilation in temperate countries – A case study of Denmark. Applied Energy, 114, 520-530. doi:10.1016/j.apenergy.2013.10.008

Zhang, L., Zhang, L., & Wang, Y. (2016). Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China. Solar Energy, 132, 38-50. doi:10.1016/j.solener.2016.02.053

Lei, J., Yang, J., & Yang, E.-H. (2016). Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy, 162, 207-217. doi:10.1016/j.apenergy.2015.10.031

Chen, C.-W., Lee, C.-W., & Lin, Y.-W. (2014). Air Conditioning — Optimizing Performance by Reducing Energy Consumption. Energy & Environment, 25(5), 1019-1024. doi:10.1260/0958-305x.25.5.1019

Sivak, M. (2009). Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries. Energy Policy, 37(4), 1382-1384. doi:10.1016/j.enpol.2008.11.031

Attia, S., Hensen, J. L. M., Beltrán, L., & De Herde, A. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155-169. doi:10.1080/19401493.2010.549573

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319-331. doi:10.1016/s0378-7788(00)00114-6

Newsham, G. R. (1997). Clothing as a thermal comfort moderator and the effect on energy consumption. Energy and Buildings, 26(3), 283-291. doi:10.1016/s0378-7788(97)00009-1

Schiavon, S., & Lee, K. H. (2013). Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Building and Environment, 59, 250-260. doi:10.1016/j.buildenv.2012.08.024

Lee, Y. S., & Malkawi, A. M. (2014). Simulating multiple occupant behaviors in buildings: An agent-based modeling approach. Energy and Buildings, 69, 407-416. doi:10.1016/j.enbuild.2013.11.020

Kang, D. H., Mo, P. H., Choi, D. H., Song, S. Y., Yeo, M. S., & Kim, K. W. (2010). Effect of MRT variation on the energy consumption in a PMV-controlled office. Building and Environment, 45(9), 1914-1922. doi:10.1016/j.buildenv.2010.02.020

Luo, M., Cao, B., Zhou, X., Li, M., Zhang, J., Ouyang, Q., & Zhu, Y. (2014). Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 72, 411-418. doi:10.1016/j.enbuild.2013.12.057

Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 98, 55-70. doi:10.1016/j.buildenv.2015.12.019

Hwang, R.-L., & Shu, S.-Y. (2011). Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Building and Environment, 46(4), 824-834. doi:10.1016/j.buildenv.2010.10.009

Ioannou, A., & Itard, L. C. M. (2015). Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings, 92, 216-233. doi:10.1016/j.enbuild.2015.01.055

Hong, T., Taylor-Lange, S. C., D’Oca, S., Yan, D., & Corgnati, S. P. (2016). Advances in research and applications of energy-related occupant behavior in buildings. Energy and Buildings, 116, 694-702. doi:10.1016/j.enbuild.2015.11.052

Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264-278. doi:10.1016/j.enbuild.2015.08.032

Putra, H. C., Andrews, C. J., & Senick, J. A. (2017). An agent-based model of building occupant behavior during load shedding. Building Simulation, 10(6), 845-859. doi:10.1007/s12273-017-0384-x

Thomas, A., Menassa, C. C., & Kamat, V. R. (2017). Lightweight and adaptive building simulation (LABS) framework for integrated building energy and thermal comfort analysis. Building Simulation, 10(6), 1023-1044. doi:10.1007/s12273-017-0409-5

Lindner, A. J. M., Park, S., & Mitterhofer, M. (2017). Determination of requirements on occupant behavior models for the use in building performance simulations. Building Simulation, 10(6), 861-874. doi:10.1007/s12273-017-0394-8

Cedeno Laurent, J. G., Samuelson, H. W., & Chen, Y. (2017). The impact of window opening and other occupant behavior on simulated energy performance in residence halls. Building Simulation, 10(6), 963-976. doi:10.1007/s12273-017-0399-3

Kuznik, F., Virgone, J., & Johannes, K. (2010). Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 42(7), 1004-1009. doi:10.1016/j.enbuild.2010.01.012

Salvalai, G., Pfafferott, J., & Sesana, M. M. (2013). Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings. Energy Conversion and Management, 76, 332-341. doi:10.1016/j.enconman.2013.07.064

Lebon, M., Fellouah, H., Galanis, N., Limane, A., & Guerfala, N. (2016). Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: a case study. Energy Efficiency, 10(3), 527-548. doi:10.1007/s12053-016-9469-0

Calleja Rodríguez, G., Carrillo Andrés, A., Domínguez Muñoz, F., Cejudo López, J. M., & Zhang, Y. (2013). Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy and Buildings, 67, 79-87. doi:10.1016/j.enbuild.2013.08.009

Basinska, M., Koczyk, H., & Szczechowiak, E. (2015). Sensitivity analysis in determining the optimum energy for residential buildings in Polish conditions. Energy and Buildings, 107, 307-318. doi:10.1016/j.enbuild.2015.08.029

Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411-419. doi:10.1016/j.rser.2012.12.014

Lomas, K. J., & Eppel, H. (1992). Sensitivity analysis techniques for building thermal simulation programs. Energy and Buildings, 19(1), 21-44. doi:10.1016/0378-7788(92)90033-d

Breesch, H., & Janssens, A. (2010). Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis. Solar Energy, 84(8), 1453-1467. doi:10.1016/j.solener.2010.05.008

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439-473. doi:10.5194/hessd-4-439-2007

Balvís, E., Sampedro, Ó., Zaragoza, S., Paredes, A., & Michinel, H. (2016). A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings. Applied Energy, 177, 60-70. doi:10.1016/j.apenergy.2016.04.117

Meteonorm: Irradiation Data for Every Place on Earth. Bern2014: Switzerlan https://meteonorm.com

Fanger, P. O. (1986). Thermal environment — Human requirements. The Environmentalist, 6(4), 275-278. doi:10.1007/bf02238059

Hasan, M. H., Alsaleem, F., & Rafaie, M. (2016). Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Building and Environment, 110, 173-183. doi:10.1016/j.buildenv.2016.10.007

Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality. Applied Energy, 174, 37-68. doi:10.1016/j.apenergy.2016.04.078

Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577-591. doi:10.1016/j.apenergy.2015.04.090

Lam, J. C., & Hui, S. C. M. (1996). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27-39. doi:10.1016/0360-1323(95)00031-3

Havenith, G., Holmér, I., & Parsons, K. (2002). Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy and Buildings, 34(6), 581-591. doi:10.1016/s0378-7788(02)00008-7

Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70(3), 227-235. doi:10.1016/s0038-092x(00)00093-1

Humphreys, M. A., & Fergus Nicol, J. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34(6), 667-684. doi:10.1016/s0378-7788(02)00018-x

Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123-141. doi:10.1016/j.rser.2014.05.007

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record