- -

Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Robledo-Fava, Roberto es_ES
dc.contributor.author Hernández-Luna, Monica C. es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Michinel, Humberto es_ES
dc.contributor.author Zaragoza, Sonia es_ES
dc.contributor.author Castillo-Guzman, A. es_ES
dc.contributor.author Selvas-Aguilar, Romeo es_ES
dc.date.accessioned 2020-12-02T04:31:12Z
dc.date.available 2020-12-02T04:31:12Z
dc.date.issued 2019-04-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156257
dc.description.abstract [EN] In the present work, we analyze the influence of the designer's choice of values for the human metabolic index (met) and insulation by clothing (clo) that can be selected within the ISO 7730 for the calculation of the energy demand of buildings. To this aim, we first numerically modeled, using TRNSYS, two buildings in different countries and climatologies. Then, we consistently validated our simulations by predicting indoor temperatures and comparing them with measured data. After that, the energy demand of both buildings was obtained. Subsequently, the variability of the set-point temperature concerning the choice of clo and met, within limits prescribed in ISO 7730, was analyzed using a Monte Carlo method. This variability of the interior comfort conditions has been finally used in the numerical model previously validated, to calculate the changes in the energy demand of the two buildings. Therefore, this work demonstrated that the diversity of possibilities offered by ISO 7730 for the choice of clo and met results, depending on the values chosen by the designer, in significant differences in indoor comfort conditions, leading to non-negligible changes in the calculations of energy consumption, especially in the case of big buildings. es_ES
dc.description.sponsorship This work was partially funded by grants OHMERA MAT2017-86453-R, FIS2017-83762-P and ENE2015-71333-R from MINECO (Spain). R. Robledo and M. Hernandez were supported by CONACYT grants 298503 and 296471, respectively. We also thanks to supporting given by the project number INFRA-187906 from the Mexican National Council of Science and Technology-CONACYT. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Monte Carlo method es_ES
dc.subject ISO 7730 es_ES
dc.subject TRNSYS es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12081531 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86453-R/ES/MATERIALES HIBRIDOS ORGANICO-INORGANICOS PARA APLICACIONES DE REFRIGERACION ECOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83762-P/ES/SIMULACION OPTICA DE MATERIA OSCURA Y OTROS SISTEMAS DE FISICA FUNDAMENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//298503/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//296471/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//INFRA-187906/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-71333-R/ES/CONVECCION FORZADA EN CANALES TURBULENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Robledo-Fava, R.; Hernández-Luna, MC.; Fernández De Córdoba, P.; Michinel, H.; Zaragoza, S.; Castillo-Guzman, A.; Selvas-Aguilar, R. (2019). Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings. Energies. 12(8):1-23. https://doi.org/10.3390/en12081531 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12081531 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\384896 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Hemsath, T. L., & Alagheband Bandhosseini, K. (2015). Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526-538. doi:10.1016/j.renene.2014.11.044 es_ES
dc.description.references Griego, D., Krarti, M., & Hernandez-Guerrero, A. (2015). Energy efficiency optimization of new and existing office buildings in Guanajuato, Mexico. Sustainable Cities and Society, 17, 132-140. doi:10.1016/j.scs.2015.04.008 es_ES
dc.description.references Lin, H.-W., & Hong, T. (2013). On variations of space-heating energy use in office buildings. Applied Energy, 111, 515-528. doi:10.1016/j.apenergy.2013.05.040 es_ES
dc.description.references Pikas, E., Thalfeldt, M., & Kurnitski, J. (2014). Cost optimal and nearly zero energy building solutions for office buildings. Energy and Buildings, 74, 30-42. doi:10.1016/j.enbuild.2014.01.039 es_ES
dc.description.references Terés-Zubiaga, J., Campos-Celador, A., González-Pino, I., & Escudero-Revilla, C. (2015). Energy and economic assessment of the envelope retrofitting in residential buildings in Northern Spain. Energy and Buildings, 86, 194-202. doi:10.1016/j.enbuild.2014.10.018 es_ES
dc.description.references Lee, J., Kim, J., Song, D., Kim, J., & Jang, C. (2017). Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews, 75, 1081-1088. doi:10.1016/j.rser.2016.11.087 es_ES
dc.description.references Anderson, J. E., Wulfhorst, G., & Lang, W. (2015). Energy analysis of the built environment—A review and outlook. Renewable and Sustainable Energy Reviews, 44, 149-158. doi:10.1016/j.rser.2014.12.027 es_ES
dc.description.references Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150-168. doi:10.1016/j.rser.2010.09.003 es_ES
dc.description.references Nejat, P., Jomehzadeh, F., Taheri, M. M., Gohari, M., & Abd. Majid, M. Z. (2015). A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862. doi:10.1016/j.rser.2014.11.066 es_ES
dc.description.references Balaras, C. A., Droutsa, K., Dascalaki, E., & Kontoyiannidis, S. (2005). Heating energy consumption and resulting environmental impact of European apartment buildings. Energy and Buildings, 37(5), 429-442. doi:10.1016/j.enbuild.2004.08.003 es_ES
dc.description.references Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007 es_ES
dc.description.references Galvin, R. (2010). Thermal upgrades of existing homes in Germany: The building code, subsidies, and economic efficiency. Energy and Buildings, 42(6), 834-844. doi:10.1016/j.enbuild.2009.12.004 es_ES
dc.description.references Reducing US Greenhouse Gas Emissions: How Much at What Cost?: US Greenhouse Gas Abatement Mapping Initiative https://www.mckinsey.com/business-functions/sustainability/our-insights/reducing-us-greenhouse-gas-emissions es_ES
dc.description.references Chappells †, H., & Shove ‡, E. (2005). Debating the future of comfort: environmental sustainability, energy consumption and the indoor environment. Building Research & Information, 33(1), 32-40. doi:10.1080/0961321042000322762 es_ES
dc.description.references Geva, A., Saaroni, H., & Morris, J. (2013). Measurements and simulations of thermal comfort: a synagogue in Tel Aviv, Israel. Journal of Building Performance Simulation, 7(3), 233-250. doi:10.1080/19401493.2013.819530 es_ES
dc.description.references Nguyen, A. T., & Reiter, S. (2013). Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria. Journal of Building Performance Simulation, 7(1), 68-81. doi:10.1080/19401493.2013.770067 es_ES
dc.description.references Rey Martínez, F. J., Chicote, M. A., Peñalver, A. V., Gónzalez, A. T., & Gómez, E. V. (2015). Indoor air quality and thermal comfort evaluation in a Spanish modern low-energy office with thermally activated building systems. Science and Technology for the Built Environment, 21(8), 1091-1099. doi:10.1080/23744731.2015.1056655 es_ES
dc.description.references Wardiningsih, W., & Troynikov, O. (2017). Force attenuation capacity and thermophysiological wear comfort of vertically lapped nonwoven fabric. The Journal of The Textile Institute, 109(8), 1035-1043. doi:10.1080/00405000.2017.1398624 es_ES
dc.description.references Oropeza-Perez, I., Petzold-Rodriguez, A. H., & Bonilla-Lopez, C. (2017). Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy and Buildings, 145, 251-258. doi:10.1016/j.enbuild.2017.04.031 es_ES
dc.description.references Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76-84. doi:10.1007/s004840050119 es_ES
dc.description.references Peeters, L., Dear, R. de, Hensen, J., & D’haeseleer, W. (2009). Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy, 86(5), 772-780. doi:10.1016/j.apenergy.2008.07.011 es_ES
dc.description.references Ahmed, K., Akhondzada, A., Kurnitski, J., & Olesen, B. (2017). Occupancy schedules for energy simulation in new prEN16798-1 and ISO/FDIS 17772-1 standards. Sustainable Cities and Society, 35, 134-144. doi:10.1016/j.scs.2017.07.010 es_ES
dc.description.references Antoniadou, P., & Papadopoulos, A. M. (2017). Occupants’ thermal comfort: State of the art and the prospects of personalized assessment in office buildings. Energy and Buildings, 153, 136-149. doi:10.1016/j.enbuild.2017.08.001 es_ES
dc.description.references Oropeza-Perez, I., & Østergaard, P. A. (2014). Potential of natural ventilation in temperate countries – A case study of Denmark. Applied Energy, 114, 520-530. doi:10.1016/j.apenergy.2013.10.008 es_ES
dc.description.references Zhang, L., Zhang, L., & Wang, Y. (2016). Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China. Solar Energy, 132, 38-50. doi:10.1016/j.solener.2016.02.053 es_ES
dc.description.references Lei, J., Yang, J., & Yang, E.-H. (2016). Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy, 162, 207-217. doi:10.1016/j.apenergy.2015.10.031 es_ES
dc.description.references Chen, C.-W., Lee, C.-W., & Lin, Y.-W. (2014). Air Conditioning — Optimizing Performance by Reducing Energy Consumption. Energy & Environment, 25(5), 1019-1024. doi:10.1260/0958-305x.25.5.1019 es_ES
dc.description.references Sivak, M. (2009). Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries. Energy Policy, 37(4), 1382-1384. doi:10.1016/j.enpol.2008.11.031 es_ES
dc.description.references Attia, S., Hensen, J. L. M., Beltrán, L., & De Herde, A. (2012). Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs. Journal of Building Performance Simulation, 5(3), 155-169. doi:10.1080/19401493.2010.549573 es_ES
dc.description.references Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319-331. doi:10.1016/s0378-7788(00)00114-6 es_ES
dc.description.references Newsham, G. R. (1997). Clothing as a thermal comfort moderator and the effect on energy consumption. Energy and Buildings, 26(3), 283-291. doi:10.1016/s0378-7788(97)00009-1 es_ES
dc.description.references Schiavon, S., & Lee, K. H. (2013). Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Building and Environment, 59, 250-260. doi:10.1016/j.buildenv.2012.08.024 es_ES
dc.description.references Lee, Y. S., & Malkawi, A. M. (2014). Simulating multiple occupant behaviors in buildings: An agent-based modeling approach. Energy and Buildings, 69, 407-416. doi:10.1016/j.enbuild.2013.11.020 es_ES
dc.description.references Kang, D. H., Mo, P. H., Choi, D. H., Song, S. Y., Yeo, M. S., & Kim, K. W. (2010). Effect of MRT variation on the energy consumption in a PMV-controlled office. Building and Environment, 45(9), 1914-1922. doi:10.1016/j.buildenv.2010.02.020 es_ES
dc.description.references Luo, M., Cao, B., Zhou, X., Li, M., Zhang, J., Ouyang, Q., & Zhu, Y. (2014). Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings, 72, 411-418. doi:10.1016/j.enbuild.2013.12.057 es_ES
dc.description.references Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Building and Environment, 98, 55-70. doi:10.1016/j.buildenv.2015.12.019 es_ES
dc.description.references Hwang, R.-L., & Shu, S.-Y. (2011). Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Building and Environment, 46(4), 824-834. doi:10.1016/j.buildenv.2010.10.009 es_ES
dc.description.references Ioannou, A., & Itard, L. C. M. (2015). Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy. Energy and Buildings, 92, 216-233. doi:10.1016/j.enbuild.2015.01.055 es_ES
dc.description.references Hong, T., Taylor-Lange, S. C., D’Oca, S., Yan, D., & Corgnati, S. P. (2016). Advances in research and applications of energy-related occupant behavior in buildings. Energy and Buildings, 116, 694-702. doi:10.1016/j.enbuild.2015.11.052 es_ES
dc.description.references Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy and Buildings, 107, 264-278. doi:10.1016/j.enbuild.2015.08.032 es_ES
dc.description.references Putra, H. C., Andrews, C. J., & Senick, J. A. (2017). An agent-based model of building occupant behavior during load shedding. Building Simulation, 10(6), 845-859. doi:10.1007/s12273-017-0384-x es_ES
dc.description.references Thomas, A., Menassa, C. C., & Kamat, V. R. (2017). Lightweight and adaptive building simulation (LABS) framework for integrated building energy and thermal comfort analysis. Building Simulation, 10(6), 1023-1044. doi:10.1007/s12273-017-0409-5 es_ES
dc.description.references Lindner, A. J. M., Park, S., & Mitterhofer, M. (2017). Determination of requirements on occupant behavior models for the use in building performance simulations. Building Simulation, 10(6), 861-874. doi:10.1007/s12273-017-0394-8 es_ES
dc.description.references Cedeno Laurent, J. G., Samuelson, H. W., & Chen, Y. (2017). The impact of window opening and other occupant behavior on simulated energy performance in residence halls. Building Simulation, 10(6), 963-976. doi:10.1007/s12273-017-0399-3 es_ES
dc.description.references Kuznik, F., Virgone, J., & Johannes, K. (2010). Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energy and Buildings, 42(7), 1004-1009. doi:10.1016/j.enbuild.2010.01.012 es_ES
dc.description.references Salvalai, G., Pfafferott, J., & Sesana, M. M. (2013). Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings. Energy Conversion and Management, 76, 332-341. doi:10.1016/j.enconman.2013.07.064 es_ES
dc.description.references Lebon, M., Fellouah, H., Galanis, N., Limane, A., & Guerfala, N. (2016). Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: a case study. Energy Efficiency, 10(3), 527-548. doi:10.1007/s12053-016-9469-0 es_ES
dc.description.references Calleja Rodríguez, G., Carrillo Andrés, A., Domínguez Muñoz, F., Cejudo López, J. M., & Zhang, Y. (2013). Uncertainties and sensitivity analysis in building energy simulation using macroparameters. Energy and Buildings, 67, 79-87. doi:10.1016/j.enbuild.2013.08.009 es_ES
dc.description.references Basinska, M., Koczyk, H., & Szczechowiak, E. (2015). Sensitivity analysis in determining the optimum energy for residential buildings in Polish conditions. Energy and Buildings, 107, 307-318. doi:10.1016/j.enbuild.2015.08.029 es_ES
dc.description.references Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411-419. doi:10.1016/j.rser.2012.12.014 es_ES
dc.description.references Lomas, K. J., & Eppel, H. (1992). Sensitivity analysis techniques for building thermal simulation programs. Energy and Buildings, 19(1), 21-44. doi:10.1016/0378-7788(92)90033-d es_ES
dc.description.references Breesch, H., & Janssens, A. (2010). Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis. Solar Energy, 84(8), 1453-1467. doi:10.1016/j.solener.2010.05.008 es_ES
dc.description.references Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439-473. doi:10.5194/hessd-4-439-2007 es_ES
dc.description.references Balvís, E., Sampedro, Ó., Zaragoza, S., Paredes, A., & Michinel, H. (2016). A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings. Applied Energy, 177, 60-70. doi:10.1016/j.apenergy.2016.04.117 es_ES
dc.description.references Meteonorm: Irradiation Data for Every Place on Earth. Bern2014: Switzerlan https://meteonorm.com es_ES
dc.description.references Fanger, P. O. (1986). Thermal environment — Human requirements. The Environmentalist, 6(4), 275-278. doi:10.1007/bf02238059 es_ES
dc.description.references Hasan, M. H., Alsaleem, F., & Rafaie, M. (2016). Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation. Building and Environment, 110, 173-183. doi:10.1016/j.buildenv.2016.10.007 es_ES
dc.description.references Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality. Applied Energy, 174, 37-68. doi:10.1016/j.apenergy.2016.04.078 es_ES
dc.description.references Méndez Echenagucia, T., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied Energy, 154, 577-591. doi:10.1016/j.apenergy.2015.04.090 es_ES
dc.description.references Lam, J. C., & Hui, S. C. M. (1996). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27-39. doi:10.1016/0360-1323(95)00031-3 es_ES
dc.description.references Havenith, G., Holmér, I., & Parsons, K. (2002). Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy and Buildings, 34(6), 581-591. doi:10.1016/s0378-7788(02)00008-7 es_ES
dc.description.references Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70(3), 227-235. doi:10.1016/s0038-092x(00)00093-1 es_ES
dc.description.references Humphreys, M. A., & Fergus Nicol, J. (2002). The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 34(6), 667-684. doi:10.1016/s0378-7788(02)00018-x es_ES
dc.description.references Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123-141. doi:10.1016/j.rser.2014.05.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem