- -

A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps

Mostrar el registro completo del ítem

Carnieletto, L.; Badenes Badenes, B.; Belliardi, M.; Bernardi, A.; Graci, S.; Emmi, G.; Urchueguía Schölzel, JF.... (2019). A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps. Energies. 12(13):1-23. https://doi.org/10.3390/en12132496

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156260

Ficheros en el ítem

Metadatos del ítem

Título: A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps
Autor: Carnieletto, Laura Badenes Badenes, Borja Belliardi, Marco Bernardi, Adriana Graci, Samantha Emmi, Giuseppe Urchueguía Schölzel, Javier Fermín Zarrella, Angelo Di Bella, Antonino Dalla Santa, Giorgia Galgaro, Antonio Mezzasalma, Giulia De Carli, Michele
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two ...[+]
Palabras clave: Building energy demand , Energy profiles , GSHP , Residential buildings
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en12132496
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/en12132496
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/657982/EU/CHEAP AND EFFICIENT APPLICATION OF RELIABLE GROUND SOURCE HEAT EXCHANGERS AND PUMPS/
Agradecimientos:
This work received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 657982.
Tipo: Artículo

References

De Carli, M., Tonon, M., Zarrella, A., & Zecchin, R. (2010). A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers. Renewable Energy, 35(7), 1537-1550. doi:10.1016/j.renene.2009.11.034

Grossi, I., Dongellini, M., Piazzi, A., & Morini, G. L. (2018). Dynamic modelling and energy performance analysis of an innovative dual-source heat pump system. Applied Thermal Engineering, 142, 745-759. doi:10.1016/j.applthermaleng.2018.07.022

Engineering Reference Manual. In EnergyPlus V8.5https://energyplus.net/ [+]
De Carli, M., Tonon, M., Zarrella, A., & Zecchin, R. (2010). A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers. Renewable Energy, 35(7), 1537-1550. doi:10.1016/j.renene.2009.11.034

Grossi, I., Dongellini, M., Piazzi, A., & Morini, G. L. (2018). Dynamic modelling and energy performance analysis of an innovative dual-source heat pump system. Applied Thermal Engineering, 142, 745-759. doi:10.1016/j.applthermaleng.2018.07.022

Engineering Reference Manual. In EnergyPlus V8.5https://energyplus.net/

Sandberg, N. H., Bergsdal, H., & Brattebø, H. (2011). Historical energy analysis of the Norwegian dwelling stock. Building Research & Information, 39(1), 1-15. doi:10.1080/09613218.2010.528186

Application of Energy Performance Indicators for Residential Building Stocks Experiences of the EPISCOPE Projecthttp://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_Indicators_ConceptAndExperiences.pdf

Gustafsson, M., Dipasquale, C., Poppi, S., Bellini, A., Fedrizzi, R., Bales, C., … Holmberg, S. (2017). Economic and environmental analysis of energy renovation packages for European office buildings. Energy and Buildings, 148, 155-165. doi:10.1016/j.enbuild.2017.04.079

De Carli, M., Bernardi, A., Cultrera, M., Dalla Santa, G., Di Bella, A., Emmi, G., … Zarrella, A. (2018). A Database for Climatic Conditions around Europe for Promoting GSHP Solutions. Geosciences, 8(2), 71. doi:10.3390/geosciences8020071

Cartalis, C., Synodinou, A., Proedrou, M., Tsangrassoulis, A., & Santamouris, M. (2001). Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Conversion and Management, 42(14), 1647-1656. doi:10.1016/s0196-8904(00)00156-4

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. doi:10.1127/0941-2948/2006/0130

Herrera, M., Natarajan, S., Coley, D. A., Kershaw, T., Ramallo-González, A. P., Eames, M., … Wood, M. (2017). A review of current and future weather data for building simulation. Building Services Engineering Research and Technology, 38(5), 602-627. doi:10.1177/0143624417705937

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. doi:10.5194/hess-11-1633-2007

D’Amico, A., Ciulla, G., Panno, D., & Ferrari, S. (2019). Building energy demand assessment through heating degree days: The importance of a climatic dataset. Applied Energy, 242, 1285-1306. doi:10.1016/j.apenergy.2019.03.167

Al-Hadhrami, L. M. (2013). Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews, 27, 305-314. doi:10.1016/j.rser.2013.04.034

Degree Days.net-Custom Degree Day Datahttp://www.degreedays.net

Annunziata, E., Frey, M., & Rizzi, F. (2013). Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe. Energy, 57, 125-133. doi:10.1016/j.energy.2012.11.049

Principle for Nearly Zero-Energy Buildings, Ecofys Germany GmbHhttp://bpie.eu/documents/BPIE/publications/LR_nZEB%20study.pdf

Ahern, C., Griffiths, P., & O’Flaherty, M. (2013). State of the Irish housing stock—Modelling the heat losses of Ireland’s existing detached rural housing stock & estimating the benefit of thermal retrofit measures on this stock. Energy Policy, 55, 139-151. doi:10.1016/j.enpol.2012.11.039

Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454-462. doi:10.1016/j.enbuild.2005.08.005

Zavadskas, E., Raslanas, S., & Kaklauskas, A. (2008). The selection of effective retrofit scenarios for panel houses in urban neighborhoods based on expected energy savings and increase in market value: The Vilnius case. Energy and Buildings, 40(4), 573-587. doi:10.1016/j.enbuild.2007.04.015

Aerts, D., Minnen, J., Glorieux, I., Wouters, I., & Descamps, F. (2014). A method for the identification and modelling of realistic domestic occupancy sequences for building energy demand simulations and peer comparison. Building and Environment, 75, 67-78. doi:10.1016/j.buildenv.2014.01.021

Yang, Z., & Becerik-Gerber, B. (2014). The coupled effects of personalized occupancy profile based HVAC schedules and room reassignment on building energy use. Energy and Buildings, 78, 113-122. doi:10.1016/j.enbuild.2014.04.002

Richardson, I., Thomson, M., & Infield, D. (2008). A high-resolution domestic building occupancy model for energy demand simulations. Energy and Buildings, 40(8), 1560-1566. doi:10.1016/j.enbuild.2008.02.006

Villi, G., Peretti, C., Graci, S., & De Carli, M. (2013). Building leakage analysis and infiltration modelling for an Italian multi-family building. Journal of Building Performance Simulation, 6(2), 98-118. doi:10.1080/19401493.2012.699981

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem