Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chemical Reviews, 107(10), 3952-3991. doi:10.1021/cr0501994
[+]
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chemical Reviews, 107(10), 3952-3991. doi:10.1021/cr0501994
Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274
Zhou, C.-H., Xia, X., Lin, C.-X., Tong, D.-S., & Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews, 40(11), 5588. doi:10.1039/c1cs15124j
Wildgoose, G. G., Banks, C. E., & Compton, R. G. (2006). Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small, 2(2), 182-193. doi:10.1002/smll.200500324
Zhu, J., Holmen, A., & Chen, D. (2013). Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences. ChemCatChem, 5(2), 378-401. doi:10.1002/cctc.201200471
Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as Renewable Raw Material. ChemSusChem, 3(11), 1227-1235. doi:10.1002/cssc.201000157
Upton, B. M., & Kasko, A. M. (2015). Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews, 116(4), 2275-2306. doi:10.1021/acs.chemrev.5b00345
Zhang, F., Jin, Y., Fu, Y., Zhong, Y., Zhu, W., Ibrahim, A. A., & El-Shall, M. S. (2015). Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. Journal of Materials Chemistry A, 3(33), 17008-17015. doi:10.1039/c5ta03524d
Santos, J. L., Alda-Onggar, M., Fedorov, V., Peurla, M., Eränen, K., Mäki-Arvela, P., … Murzin, D. Y. (2018). Hydrodeoxygenation of vanillin over carbon supported metal catalysts. Applied Catalysis A: General, 561, 137-149. doi:10.1016/j.apcata.2018.05.010
Hao, P., Schwartz, D. K., & Medlin, J. W. (2018). Phosphonic acid promotion of supported Pd catalysts for low temperature vanillin hydrodeoxygenation in ethanol. Applied Catalysis A: General, 561, 1-6. doi:10.1016/j.apcata.2018.05.008
Zhang, F., Zheng, S., Xiao, Q., Zhong, Y., Zhu, W., Lin, A., & Samy El-Shall, M. (2016). Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water. Green Chemistry, 18(9), 2900-2908. doi:10.1039/c5gc02615f
Davis, S. E., Ide, M. S., & Davis, R. J. (2013). Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem., 15(1), 17-45. doi:10.1039/c2gc36441g
Zhang, Z., & Deng, K. (2015). Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catalysis, 5(11), 6529-6544. doi:10.1021/acscatal.5b01491
Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018c
Siyo, B., Schneider, M., Radnik, J., Pohl, M.-M., Langer, P., & Steinfeldt, N. (2014). Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 478, 107-116. doi:10.1016/j.apcata.2014.03.020
Rathod, P. V., & Jadhav, V. H. (2018). Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry & Engineering, 6(5), 5766-5771. doi:10.1021/acssuschemeng.7b03124
Machado, B. F., Oubenali, M., Rosa Axet, M., Trang NGuyen, T., Tunckol, M., Girleanu, M., … Serp, P. (2014). Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. Journal of Catalysis, 309, 185-198. doi:10.1016/j.jcat.2013.09.016
Placke, T., Siozios, V., Schmitz, R., Lux, S. F., Bieker, P., Colle, C., … Winter, M. (2012). Influence of graphite surface modifications on the ratio of basal plane to «non-basal plane» surface area and on the anode performance in lithium ion batteries. Journal of Power Sources, 200, 83-91. doi:10.1016/j.jpowsour.2011.10.085
Themed Issue: Lithium Ions in Solids - Between Basics and Better Batteries / Paul Heitjans. Zeitschrift für Physikalische Chemie
Reshetenko, T. V., Avdeeva, L. B., Ismagilov, Z. R., Pushkarev, V. V., Cherepanova, S. V., Chuvilin, A. L., & Likholobov, V. A. (2003). Catalytic filamentous carbon. Carbon, 41(8), 1605-1615. doi:10.1016/s0008-6223(03)00115-5
Estrade-Szwarckopf, H. (2004). XPS photoemission in carbonaceous materials: A «defect» peak beside the graphitic asymmetric peak. Carbon, 42(8-9), 1713-1721. doi:10.1016/j.carbon.2004.03.005
Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033j
Okpalugo, T. I. T., Papakonstantinou, P., Murphy, H., McLaughlin, J., & Brown, N. M. D. (2005). High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 43(1), 153-161. doi:10.1016/j.carbon.2004.08.033
Müller, J.-O., Su, D. S., Wild, U., & Schlögl, R. (2007). Bulk and surface structural investigations of diesel engine soot and carbon black. Phys. Chem. Chem. Phys., 9(30), 4018-4025. doi:10.1039/b704850e
Cançado, L. G., Jorio, A., Ferreira, E. H. M., Stavale, F., Achete, C. A., Capaz, R. B., … Ferrari, A. C. (2011). Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 11(8), 3190-3196. doi:10.1021/nl201432g
Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., … Pimenta, M. A. (2006). General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 88(16), 163106. doi:10.1063/1.2196057
Domínguez-Domínguez, S., Berenguer-Murcia, Á., Pradhan, B. K., Linares-Solano, Á., & Cazorla-Amorós, D. (2008). Semihydrogenation of Phenylacetylene Catalyzed by Palladium Nanoparticles Supported on Carbon Materials. The Journal of Physical Chemistry C, 112(10), 3827-3834. doi:10.1021/jp710693u
Toebes, M. L., van Dillen, J. A., & de Jong, K. P. (2001). Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 75-98. doi:10.1016/s1381-1169(01)00146-7
Dong Jin Suh, Tae-Jin, P., & Son-Ki, I. (1993). Effect of surface oxygen groups of carbon supports on the characteristics of Pd/C catalysts. Carbon, 31(3), 427-435. doi:10.1016/0008-6223(93)90130-3
Kang, M., Song, M. W., & Kim, K. L. (2002). Reaction Kinetics and Catalysis Letters, 76(2), 207-212. doi:10.1023/a:1016563323091
[-]