- -

Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Espinosa-López, Juan Carlos es_ES
dc.contributor.author Castro Contreras, Rubén es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Rivera-Cárcamo, Camila es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Machado, Bruno F. es_ES
dc.contributor.author Serp, Philippe es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-12-04T04:31:29Z
dc.date.available 2020-12-04T04:31:29Z
dc.date.issued 2019-04-16 es_ES
dc.identifier.issn 1434-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156414
dc.description.abstract [EN] Three palladium catalysts at similar loadings supported on few-layers graphene (FLG), carbon nanotubes (CNT) and carbon nanofibers (CNF) have been prepared by wet impregnation of palladium nitrate with the purpose of determine the influence of the support on Pd catalytic activity. The supports and catalysts have been characterized by chemical analysis, Raman spectroscopy, XRD, electron microscopy and XPS. The average Pd particle size depends on the carbon support, ranging from 1.6 nm for CNF to 2.6 nm for FLG. The catalytic activity of these catalysts was evaluated for two different reactions of interest for biomass transformations, namely hydrodeoxygenation of vanillin to 2-methoxy-4-methyl-phenol (creosol) that requires a bifunctional catalyst with hydrogenating and Lewis acid sites, and aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Both compounds have application either as food flavouring additive and polyester co-monomer. For the two reactions the activity order of the fresh catalyst was Pd/FLG > Pd/CNF > Pd/CNT, indicating that FLG contributes favorably to the activity in spite of the larger Pd size of the nanoparticles on this support, a fact that has been attributed to the interaction with the prismatic planes on where Pd nanoparticles are located. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa GTQ2015-65163-C02-R1 and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/063). S. N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016). C. R. C. thanks CONICYT for the financial support (Becas de doctorado en el extranjero "Becas Chile" - no 72170200). The authors thank Dr. Tobias Placke (Universitat Munster, Germany) for nitrogen adsorption measurements and adsorptive potential distributions calculations. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Palladium nanoparticles es_ES
dc.subject Carbon support es_ES
dc.subject Biomass transformation es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201900190 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F063/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//72170200/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53292-R/ES/MATERIALES GRAFENICOS COMO CATALIZADORES PARA REACCIONES ORGANICAS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Espinosa-López, JC.; Castro Contreras, R.; Navalón Oltra, S.; Rivera-Cárcamo, C.; Alvaro Rodríguez, MM.; Machado, BF.; Serp, P.... (2019). Influence of Carbon Supports on Palladium Nanoparticle Activity toward Hydrodeoxygenation and Aerobic Oxidation in Biomass Transformations. European Journal of Inorganic Chemistry. (14):1979-1987. https://doi.org/10.1002/ejic.201900190 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejic.201900190 es_ES
dc.description.upvformatpinicio 1979 es_ES
dc.description.upvformatpfin 1987 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\405136 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Navarro, R. M., Peña, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass. Chemical Reviews, 107(10), 3952-3991. doi:10.1021/cr0501994 es_ES
dc.description.references Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274 es_ES
dc.description.references Zhou, C.-H., Xia, X., Lin, C.-X., Tong, D.-S., & Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews, 40(11), 5588. doi:10.1039/c1cs15124j es_ES
dc.description.references Wildgoose, G. G., Banks, C. E., & Compton, R. G. (2006). Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small, 2(2), 182-193. doi:10.1002/smll.200500324 es_ES
dc.description.references Zhu, J., Holmen, A., & Chen, D. (2013). Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences. ChemCatChem, 5(2), 378-401. doi:10.1002/cctc.201200471 es_ES
dc.description.references Calvo-Flores, F. G., & Dobado, J. A. (2010). Lignin as Renewable Raw Material. ChemSusChem, 3(11), 1227-1235. doi:10.1002/cssc.201000157 es_ES
dc.description.references Upton, B. M., & Kasko, A. M. (2015). Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chemical Reviews, 116(4), 2275-2306. doi:10.1021/acs.chemrev.5b00345 es_ES
dc.description.references Zhang, F., Jin, Y., Fu, Y., Zhong, Y., Zhu, W., Ibrahim, A. A., & El-Shall, M. S. (2015). Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. Journal of Materials Chemistry A, 3(33), 17008-17015. doi:10.1039/c5ta03524d es_ES
dc.description.references Santos, J. L., Alda-Onggar, M., Fedorov, V., Peurla, M., Eränen, K., Mäki-Arvela, P., … Murzin, D. Y. (2018). Hydrodeoxygenation of vanillin over carbon supported metal catalysts. Applied Catalysis A: General, 561, 137-149. doi:10.1016/j.apcata.2018.05.010 es_ES
dc.description.references Hao, P., Schwartz, D. K., & Medlin, J. W. (2018). Phosphonic acid promotion of supported Pd catalysts for low temperature vanillin hydrodeoxygenation in ethanol. Applied Catalysis A: General, 561, 1-6. doi:10.1016/j.apcata.2018.05.008 es_ES
dc.description.references Zhang, F., Zheng, S., Xiao, Q., Zhong, Y., Zhu, W., Lin, A., & Samy El-Shall, M. (2016). Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water. Green Chemistry, 18(9), 2900-2908. doi:10.1039/c5gc02615f es_ES
dc.description.references Davis, S. E., Ide, M. S., & Davis, R. J. (2013). Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem., 15(1), 17-45. doi:10.1039/c2gc36441g es_ES
dc.description.references Zhang, Z., & Deng, K. (2015). Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catalysis, 5(11), 6529-6544. doi:10.1021/acscatal.5b01491 es_ES
dc.description.references Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018c es_ES
dc.description.references Siyo, B., Schneider, M., Radnik, J., Pohl, M.-M., Langer, P., & Steinfeldt, N. (2014). Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 478, 107-116. doi:10.1016/j.apcata.2014.03.020 es_ES
dc.description.references Rathod, P. V., & Jadhav, V. H. (2018). Efficient Method for Synthesis of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Using Pd/CC Catalyst under Aqueous Conditions. ACS Sustainable Chemistry & Engineering, 6(5), 5766-5771. doi:10.1021/acssuschemeng.7b03124 es_ES
dc.description.references Machado, B. F., Oubenali, M., Rosa Axet, M., Trang NGuyen, T., Tunckol, M., Girleanu, M., … Serp, P. (2014). Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts. Journal of Catalysis, 309, 185-198. doi:10.1016/j.jcat.2013.09.016 es_ES
dc.description.references Placke, T., Siozios, V., Schmitz, R., Lux, S. F., Bieker, P., Colle, C., … Winter, M. (2012). Influence of graphite surface modifications on the ratio of basal plane to «non-basal plane» surface area and on the anode performance in lithium ion batteries. Journal of Power Sources, 200, 83-91. doi:10.1016/j.jpowsour.2011.10.085 es_ES
dc.description.references Themed Issue: Lithium Ions in Solids - Between Basics and Better Batteries / Paul Heitjans. Zeitschrift für Physikalische Chemie es_ES
dc.description.references Reshetenko, T. V., Avdeeva, L. B., Ismagilov, Z. R., Pushkarev, V. V., Cherepanova, S. V., Chuvilin, A. L., & Likholobov, V. A. (2003). Catalytic filamentous carbon. Carbon, 41(8), 1605-1615. doi:10.1016/s0008-6223(03)00115-5 es_ES
dc.description.references Estrade-Szwarckopf, H. (2004). XPS photoemission in carbonaceous materials: A «defect» peak beside the graphitic asymmetric peak. Carbon, 42(8-9), 1713-1721. doi:10.1016/j.carbon.2004.03.005 es_ES
dc.description.references Ganesan, K., Ghosh, S., Gopala Krishna, N., Ilango, S., Kamruddin, M., & Tyagi, A. K. (2016). A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures. Physical Chemistry Chemical Physics, 18(32), 22160-22167. doi:10.1039/c6cp02033j es_ES
dc.description.references Okpalugo, T. I. T., Papakonstantinou, P., Murphy, H., McLaughlin, J., & Brown, N. M. D. (2005). High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 43(1), 153-161. doi:10.1016/j.carbon.2004.08.033 es_ES
dc.description.references Müller, J.-O., Su, D. S., Wild, U., & Schlögl, R. (2007). Bulk and surface structural investigations of diesel engine soot and carbon black. Phys. Chem. Chem. Phys., 9(30), 4018-4025. doi:10.1039/b704850e es_ES
dc.description.references Cançado, L. G., Jorio, A., Ferreira, E. H. M., Stavale, F., Achete, C. A., Capaz, R. B., … Ferrari, A. C. (2011). Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 11(8), 3190-3196. doi:10.1021/nl201432g es_ES
dc.description.references Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., … Pimenta, M. A. (2006). General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 88(16), 163106. doi:10.1063/1.2196057 es_ES
dc.description.references Domínguez-Domínguez, S., Berenguer-Murcia, Á., Pradhan, B. K., Linares-Solano, Á., & Cazorla-Amorós, D. (2008). Semihydrogenation of Phenylacetylene Catalyzed by Palladium Nanoparticles Supported on Carbon Materials. The Journal of Physical Chemistry C, 112(10), 3827-3834. doi:10.1021/jp710693u es_ES
dc.description.references Toebes, M. L., van Dillen, J. A., & de Jong, K. P. (2001). Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 75-98. doi:10.1016/s1381-1169(01)00146-7 es_ES
dc.description.references Dong Jin Suh, Tae-Jin, P., & Son-Ki, I. (1993). Effect of surface oxygen groups of carbon supports on the characteristics of Pd/C catalysts. Carbon, 31(3), 427-435. doi:10.1016/0008-6223(93)90130-3 es_ES
dc.description.references Kang, M., Song, M. W., & Kim, K. L. (2002). Reaction Kinetics and Catalysis Letters, 76(2), 207-212. doi:10.1023/a:1016563323091 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem