- -

A Set of Benchmarks for Handwritten Text Recognition on Historical Documents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Set of Benchmarks for Handwritten Text Recognition on Historical Documents

Show full item record

Sánchez Peiró, JA.; Romero, V.; Toselli, AH.; Villegas, M.; Vidal, E. (2019). A Set of Benchmarks for Handwritten Text Recognition on Historical Documents. Pattern Recognition. 94:122-134. https://doi.org/10.1016/j.patcog.2019.05.025

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156430

Files in this item

Item Metadata

Title: A Set of Benchmarks for Handwritten Text Recognition on Historical Documents
Author: Sánchez Peiró, Joan Andreu Romero, Verónica Toselli, Alejandro Héctor Villegas, Mauricio Vidal, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] Handwritten Text Recognition is a important requirement in order to make visible the contents of the myriads of historical documents residing in public and private archives and libraries world wide. Automatic Handwritten ...[+]
Subjects: Historical handwritten text recognition , Hidden Markov models , Convolutional neural networks , Recurrent neural networks , Language modeling
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Pattern Recognition. (issn: 0031-3203 )
DOI: 10.1016/j.patcog.2019.05.025
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.patcog.2019.05.025
Project ID:
info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/
fBBVA/PR[17]_HUM_D4_0059
AEI/PCI2018-093122
Thanks:
This work has been partially supported through the European Union's H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943), as well as by the BBVA Foundation through the 2017-2018 and 2018-2019 ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record