Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Peiró, Joan Andreu | es_ES |
dc.contributor.author | Romero, Verónica | es_ES |
dc.contributor.author | Toselli, Alejandro Héctor | es_ES |
dc.contributor.author | Villegas, Mauricio | es_ES |
dc.contributor.author | Vidal, Enrique | es_ES |
dc.date.accessioned | 2020-12-04T04:32:37Z | |
dc.date.available | 2020-12-04T04:32:37Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 0031-3203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156430 | |
dc.description.abstract | [EN] Handwritten Text Recognition is a important requirement in order to make visible the contents of the myriads of historical documents residing in public and private archives and libraries world wide. Automatic Handwritten Text Recognition (HTR) is a challenging problem that requires a careful combination of several advanced Pattern Recognition techniques, including but not limited to Image Processing, Document Image Analysis, Feature Extraction, Neural Network approaches and Language Modeling. The progress of this kind of systems is strongly bound by the availability of adequate benchmarking datasets, software tools and reproducible results achieved using the corresponding tools and datasets. Based on English and German historical documents proposed in recent open competitions at ICDAR and ICFHR conferences between 2014 and 2017, this paper introduces four HTR benchmarks in order of increasing complexity from several points of view. For each benchmark, a specific system is proposed which overcomes results published so far under comparable conditions. Therefore, this paper establishes new state of the art baseline systems and results which aim at becoming new challenges that would hopefully drive further improvement of HTR technologies. Both the datasets and the software tools used to implement the baseline systems are made freely accessible for research purposes. (C) 2019 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been partially supported through the European Union's H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943), as well as by the BBVA Foundation through the 2017-2018 and 2018-2019 Digital Humanities research grants "Carabela" and "HisClima - Dos Siglos de Datos Cilmaticos", and by EU JPICH project "HOME - History Of Medieval Europe" (Spanish PEICTI Ref. PC12018-093122). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Pattern Recognition | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Historical handwritten text recognition | es_ES |
dc.subject | Hidden Markov models | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Recurrent neural networks | es_ES |
dc.subject | Language modeling | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Set of Benchmarks for Handwritten Text Recognition on Historical Documents | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.patcog.2019.05.025 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/fBBVA//PR[17]_HUM_D4_0059/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PCI2018-093122/ES/HOME ‐ HISTORIA DE EUROPA MEDIEVAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Sánchez Peiró, JA.; Romero, V.; Toselli, AH.; Villegas, M.; Vidal, E. (2019). A Set of Benchmarks for Handwritten Text Recognition on Historical Documents. Pattern Recognition. 94:122-134. https://doi.org/10.1016/j.patcog.2019.05.025 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.patcog.2019.05.025 | es_ES |
dc.description.upvformatpinicio | 122 | es_ES |
dc.description.upvformatpfin | 134 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.relation.pasarela | S\387602 | es_ES |
dc.contributor.funder | Fundación BBVA | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |