- -

A Set of Benchmarks for Handwritten Text Recognition on Historical Documents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Set of Benchmarks for Handwritten Text Recognition on Historical Documents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.contributor.author Romero, Verónica es_ES
dc.contributor.author Toselli, Alejandro Héctor es_ES
dc.contributor.author Villegas, Mauricio es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.date.accessioned 2020-12-04T04:32:37Z
dc.date.available 2020-12-04T04:32:37Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0031-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156430
dc.description.abstract [EN] Handwritten Text Recognition is a important requirement in order to make visible the contents of the myriads of historical documents residing in public and private archives and libraries world wide. Automatic Handwritten Text Recognition (HTR) is a challenging problem that requires a careful combination of several advanced Pattern Recognition techniques, including but not limited to Image Processing, Document Image Analysis, Feature Extraction, Neural Network approaches and Language Modeling. The progress of this kind of systems is strongly bound by the availability of adequate benchmarking datasets, software tools and reproducible results achieved using the corresponding tools and datasets. Based on English and German historical documents proposed in recent open competitions at ICDAR and ICFHR conferences between 2014 and 2017, this paper introduces four HTR benchmarks in order of increasing complexity from several points of view. For each benchmark, a specific system is proposed which overcomes results published so far under comparable conditions. Therefore, this paper establishes new state of the art baseline systems and results which aim at becoming new challenges that would hopefully drive further improvement of HTR technologies. Both the datasets and the software tools used to implement the baseline systems are made freely accessible for research purposes. (C) 2019 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported through the European Union's H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943), as well as by the BBVA Foundation through the 2017-2018 and 2018-2019 Digital Humanities research grants "Carabela" and "HisClima - Dos Siglos de Datos Cilmaticos", and by EU JPICH project "HOME - History Of Medieval Europe" (Spanish PEICTI Ref. PC12018-093122). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Historical handwritten text recognition es_ES
dc.subject Hidden Markov models es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Recurrent neural networks es_ES
dc.subject Language modeling es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Set of Benchmarks for Handwritten Text Recognition on Historical Documents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patcog.2019.05.025 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/fBBVA//PR[17]_HUM_D4_0059/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PCI2018-093122/ES/HOME ‐ HISTORIA DE EUROPA MEDIEVAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Sánchez Peiró, JA.; Romero, V.; Toselli, AH.; Villegas, M.; Vidal, E. (2019). A Set of Benchmarks for Handwritten Text Recognition on Historical Documents. Pattern Recognition. 94:122-134. https://doi.org/10.1016/j.patcog.2019.05.025 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patcog.2019.05.025 es_ES
dc.description.upvformatpinicio 122 es_ES
dc.description.upvformatpfin 134 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.relation.pasarela S\387602 es_ES
dc.contributor.funder Fundación BBVA es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem