- -

One-dimensional mixtures of several ultracold atoms: a review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-dimensional mixtures of several ultracold atoms: a review

Mostrar el registro completo del ítem

Sowinski, T.; Garcia March, MA. (2019). One-dimensional mixtures of several ultracold atoms: a review. Reports on Progress in Physics. 82(10):1-44. https://doi.org/10.1088/1361-6633/ab3a80

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156516

Ficheros en el ítem

Metadatos del ítem

Título: One-dimensional mixtures of several ultracold atoms: a review
Autor: Sowinski, T. Garcia March, Miguel Angel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Recent theoretical and experimental progress on studying one-dimensional systems of bosonic, fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad context of mesoscopic ...[+]
Palabras clave: One-dimensional systems , Few-body systems , Ultra-cold atoms
Derechos de uso: Reserva de todos los derechos
Fuente:
Reports on Progress in Physics. (issn: 0034-4885 )
DOI: 10.1088/1361-6633/ab3a80
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1361-6633/ab3a80
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
...[+]
info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/
info:eu-repo/grantAgreement/NCN//2016%2F22%2FE%2FST2%2F00555/
info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/
info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/
info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/
info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/
info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/
[-]
Agradecimientos:
T S acknowledge financial support from the (Polish) National Science Centre with Grant No. 2016/22/E/ST2/00555. MAGM acknowledges funding from the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, ...[+]
Tipo: Artículo

References

Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. doi:10.1017/cbo9780511802850

Lewenstein, M., Sanpera, A., & Ahufinger, V. (2012). Ultracold Atoms in Optical Lattices. doi:10.1093/acprof:oso/9780199573127.001.0001

Blume, D. (2010). Jumping from two and three particles to infinitely many. Physics, 3. doi:10.1103/physics.3.74 [+]
Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. doi:10.1017/cbo9780511802850

Lewenstein, M., Sanpera, A., & Ahufinger, V. (2012). Ultracold Atoms in Optical Lattices. doi:10.1093/acprof:oso/9780199573127.001.0001

Blume, D. (2010). Jumping from two and three particles to infinitely many. Physics, 3. doi:10.1103/physics.3.74

Blume, D. (2012). Few-body physics with ultracold atomic and molecular systems in traps. Reports on Progress in Physics, 75(4), 046401. doi:10.1088/0034-4885/75/4/046401

Kinoshita, T. (2004). Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305(5687), 1125-1128. doi:10.1126/science.1100700

Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., … Bloch, I. (2004). Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277-281. doi:10.1038/nature02530

Kinoshita, T., Wenger, T., & Weiss, D. S. (2005). Local Pair Correlations in One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190406

Cheinet, P., Trotzky, S., Feld, M., Schnorrberger, U., Moreno-Cardoner, M., Fölling, S., & Bloch, I. (2008). Counting Atoms Using Interaction Blockade in an Optical Superlattice. Physical Review Letters, 101(9). doi:10.1103/physrevlett.101.090404

Will, S., Best, T., Schneider, U., Hackermüller, L., Lühmann, D.-S., & Bloch, I. (2010). Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465(7295), 197-201. doi:10.1038/nature09036

He, X., Xu, P., Wang, J., & Zhan, M. (2010). High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Optics Express, 18(13), 13586. doi:10.1364/oe.18.013586

Bourgain, R., Pellegrino, J., Fuhrmanek, A., Sortais, Y. R. P., & Browaeys, A. (2013). Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023428

Moritz, H., Stöferle, T., Günter, K., Köhl, M., & Esslinger, T. (2005). Confinement Induced Molecules in a 1D Fermi Gas. Physical Review Letters, 94(21). doi:10.1103/physrevlett.94.210401

Liao, Y., Rittner, A. S. C., Paprotta, T., Li, W., Partridge, G. B., Hulet, R. G., … Mueller, E. J. (2010). Spin-imbalance in a one-dimensional Fermi gas. Nature, 467(7315), 567-569. doi:10.1038/nature09393

Serwane, F., Zurn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., & Jochim, S. (2011). Deterministic Preparation of a Tunable Few-Fermion System. Science, 332(6027), 336-338. doi:10.1126/science.1201351

Wenz, A. N., Zurn, G., Murmann, S., Brouzos, I., Lompe, T., & Jochim, S. (2013). From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 342(6157), 457-460. doi:10.1126/science.1240516

Murmann, S., Deuretzbacher, F., Zürn, G., Bjerlin, J., Reimann, S. M., Santos, L., … Jochim, S. (2015). Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters, 115(21). doi:10.1103/physrevlett.115.215301

Murmann, S., Bergschneider, A., Klinkhamer, V. M., Zürn, G., Lompe, T., & Jochim, S. (2015). Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model. Physical Review Letters, 114(8). doi:10.1103/physrevlett.114.080402

McGuire, J. B. (1964). Study of Exactly Soluble One‐Dimensional N‐Body Problems. Journal of Mathematical Physics, 5(5), 622-636. doi:10.1063/1.1704156

Zürn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., & Jochim, S. (2012). Fermionization of Two Distinguishable Fermions. Physical Review Letters, 108(7). doi:10.1103/physrevlett.108.075303

Zürn, G., Wenz, A. N., Murmann, S., Bergschneider, A., Lompe, T., & Jochim, S. (2013). Pairing in Few-Fermion Systems with Attractive Interactions. Physical Review Letters, 111(17). doi:10.1103/physrevlett.111.175302

Chuu, C.-S., Schreck, F., Meyrath, T. P., Hanssen, J. L., Price, G. N., & Raizen, M. G. (2005). Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas. Physical Review Letters, 95(26). doi:10.1103/physrevlett.95.260403

Rontani, M. (2012). Tunneling Theory of Two Interacting Atoms in a Trap. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115302

Lode, A. U. J., Streltsov, A. I., Sakmann, K., Alon, O. E., & Cederbaum, L. S. (2012). How an interacting many-body system tunnels through a potential barrier to open space. Proceedings of the National Academy of Sciences, 109(34), 13521-13525. doi:10.1073/pnas.1201345109

Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885-964. doi:10.1103/revmodphys.80.885

Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225-1286. doi:10.1103/revmodphys.82.1225

Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., & Rigol, M. (2011). One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 83(4), 1405-1466. doi:10.1103/revmodphys.83.1405

Guan, X.-W., Batchelor, M. T., & Lee, C. (2013). Fermi gases in one dimension: From Bethe ansatz to experiments. Reviews of Modern Physics, 85(4), 1633-1691. doi:10.1103/revmodphys.85.1633

Zinner, N. T. (2016). Exploring the few- to many-body crossover using cold atoms in one dimension. EPJ Web of Conferences, 113, 01002. doi:10.1051/epjconf/201611301002

Braaten, E., & Hammer, H.-W. (2006). Universality in few-body systems with large scattering length. Physics Reports, 428(5-6), 259-390. doi:10.1016/j.physrep.2006.03.001

Naidon, P., & Endo, S. (2017). Efimov physics: a review. Reports on Progress in Physics, 80(5), 056001. doi:10.1088/1361-6633/aa50e8

Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863

Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215

Busch, T., Englert, B.-G., Rzażewski, K., & Wilkens, M. (1998). Foundations of Physics, 28(4), 549-559. doi:10.1023/a:1018705520999

WEI, B.-B. (2009). TWO ONE-DIMENSIONAL INTERACTING PARTICLES IN A HARMONIC TRAP. International Journal of Modern Physics B, 23(18), 3709-3715. doi:10.1142/s0217979209053345

Olshanii, M. (1998). Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Physical Review Letters, 81(5), 938-941. doi:10.1103/physrevlett.81.938

Idziaszek, Z., & Calarco, T. (2006). Analytical solutions for the dynamics of two trapped interacting ultracold atoms. Physical Review A, 74(2). doi:10.1103/physreva.74.022712

Sowiński, T., Brewczyk, M., Gajda, M., & Rzążewski, K. (2010). Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap. Physical Review A, 82(5). doi:10.1103/physreva.82.053631

Ebert, M., Volosniev, A., & Hammer, H.-W. (2016). Two cold atoms in a time-dependent harmonic trap in one dimension. Annalen der Physik, 528(9-10), 693-704. doi:10.1002/andp.201500365

Budewig, L., Mistakidis, S. I., & Schmelcher, P. (2019). Quench dynamics of two one-dimensional harmonically trapped bosons bridging attraction and repulsion. Molecular Physics, 117(15-16), 2043-2057. doi:10.1080/00268976.2019.1575995

Sala, S., Zürn, G., Lompe, T., Wenz, A. N., Murmann, S., Serwane, F., … Saenz, A. (2013). Coherent Molecule Formation in Anharmonic Potentials Near Confinement-Induced Resonances. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203202

Moshinsky, M. (1968). How Good is the Hartree-Fock Approximation. American Journal of Physics, 36(1), 52-53. doi:10.1119/1.1974410

Bialynicki-Birula, I. (1985). Exact solutions of nonrelativistic classical and quantum field theory with harmonic forces. Letters in Mathematical Physics, 10(2-3), 189-194. doi:10.1007/bf00398157

Załuska-Kotur, M. A., Gajda, M., Orłowski, A., & Mostowski, J. (2000). Soluble model of many interacting quantum particles in a trap. Physical Review A, 61(3). doi:10.1103/physreva.61.033613

Ko, Y., & Kim, K. S. (2012). Lifetime of a Nuclear Excited State in Cascade Decay. Few-Body Systems, 54(1-4), 437-440. doi:10.1007/s00601-012-0408-0

Klaiman, S., Streltsov, A. I., & Alon, O. E. (2017). Solvable model of a trapped mixture of Bose–Einstein condensates. Chemical Physics, 482, 362-373. doi:10.1016/j.chemphys.2016.07.011

Idziaszek, Z., & Calarco, T. (2005). Two atoms in an anisotropic harmonic trap. Physical Review A, 71(5). doi:10.1103/physreva.71.050701

Scoquart, T., Seaward, J., Jackson, S. G., & Olshanii, M. (2016). Exactly solvable quantum few-body systems associated with the symmetries of the three-dimensional and four-dimensional icosahedra. SciPost Physics, 1(1). doi:10.21468/scipostphys.1.1.005

Olshanii, M., Scoquart, T., Yampolsky, D., Dunjko, V., & Jackson, S. G. (2018). Creating entanglement using integrals of motion. Physical Review A, 97(1). doi:10.1103/physreva.97.013630

Gao, B. (1998). Solutions of the Schrödinger equation for an attractive1/r6potential. Physical Review A, 58(3), 1728-1734. doi:10.1103/physreva.58.1728

Gao, B. (1999). Repulsive1/r3interaction. Physical Review A, 59(4), 2778-2786. doi:10.1103/physreva.59.2778

Kościk, P., & Sowiński, T. (2018). Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions. Scientific Reports, 8(1). doi:10.1038/s41598-017-18505-5

Kościk, P., & Sowiński, T. (2019). Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap. Scientific Reports, 9(1). doi:10.1038/s41598-019-48442-4

Lieb, E. H., & Liniger, W. (1963). Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Physical Review, 130(4), 1605-1616. doi:10.1103/physrev.130.1605

Lieb, E. H. (1963). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Physical Review, 130(4), 1616-1624. doi:10.1103/physrev.130.1616

Calogero, F. (1971). Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 12(3), 419-436. doi:10.1063/1.1665604

Sutherland, B. (1971). Quantum Many‐Body Problem in One Dimension: Ground State. Journal of Mathematical Physics, 12(2), 246-250. doi:10.1063/1.1665584

Pittman, S. M., Beau, M., Olshanii, M., & del Campo, A. (2017). Truncated Calogero-Sutherland models. Physical Review B, 95(20). doi:10.1103/physrevb.95.205135

Marchukov, O. V., & Fischer, U. R. (2019). Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap. Annals of Physics, 405, 274-288. doi:10.1016/j.aop.2019.03.023

Astrakharchik, G. E., Blume, D., Giorgini, S., & Granger, B. E. (2004). Quasi-One-Dimensional Bose Gases with a Large Scattering Length. Physical Review Letters, 92(3). doi:10.1103/physrevlett.92.030402

Astrakharchik, G. E., Boronat, J., Casulleras, J., & Giorgini, S. (2005). Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190407

Batchelor, M. T., Bortz, M., Guan, X. W., & Oelkers, N. (2005). Evidence for the super Tonks–Girardeau gas. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), L10001-L10001. doi:10.1088/1742-5468/2005/10/l10001

Haller, E., Gustavsson, M., Mark, M. J., Danzl, J. G., Hart, R., Pupillo, G., & Nagerl, H.-C. (2009). Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science, 325(5945), 1224-1227. doi:10.1126/science.1175850

Cazalilla, M. A., & Ho, A. F. (2003). Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases. Physical Review Letters, 91(15). doi:10.1103/physrevlett.91.150403

Tempfli, E., Zöllner, S., & Schmelcher, P. (2009). Binding between two-component bosons in one dimension. New Journal of Physics, 11(7), 073015. doi:10.1088/1367-2630/11/7/073015

Petrov, D. S. (2015). Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Physical Review Letters, 115(15). doi:10.1103/physrevlett.115.155302

Zin, P., Pylak, M., Wasak, T., Gajda, M., & Idziaszek, Z. (2018). Quantum Bose-Bose droplets at a dimensional crossover. Physical Review A, 98(5). doi:10.1103/physreva.98.051603

Chiquillo, E. (2018). Equation of state of the one- and three-dimensional Bose-Bose gases. Physical Review A, 97(6). doi:10.1103/physreva.97.063605

Cabrera, C. R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., & Tarruell, L. (2017). Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373), 301-304. doi:10.1126/science.aao5686

Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., … Fattori, M. (2018). Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Physical Review Letters, 120(23). doi:10.1103/physrevlett.120.235301

Cheiney, P., Cabrera, C. R., Sanz, J., Naylor, B., Tanzi, L., & Tarruell, L. (2018). Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.135301

Nishida, Y. (2018). Universal bound states of one-dimensional bosons with two- and three-body attractions. Physical Review A, 97(6). doi:10.1103/physreva.97.061603

Pricoupenko, A., & Petrov, D. S. (2018). Dimer-dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture. Physical Review A, 97(6). doi:10.1103/physreva.97.063616

Cikojević, V., Markić, L. V., Astrakharchik, G. E., & Boronat, J. (2019). Universality in ultradilute liquid Bose-Bose mixtures. Physical Review A, 99(2). doi:10.1103/physreva.99.023618

Parisi, L., Astrakharchik, G. E., & Giorgini, S. (2019). Liquid State of One-Dimensional Bose Mixtures: A Quantum Monte Carlo Study. Physical Review Letters, 122(10). doi:10.1103/physrevlett.122.105302

Guijarro, G., Pricoupenko, A., Astrakharchik, G. E., Boronat, J., & Petrov, D. S. (2018). One-dimensional three-boson problem with two- and three-body interactions. Physical Review A, 97(6). doi:10.1103/physreva.97.061605

Tiesinga, E., & Johnson, P. R. (2011). Collapse and revival dynamics of number-squeezed superfluids of ultracold atoms in optical lattices. Physical Review A, 83(6). doi:10.1103/physreva.83.063609

Silva-Valencia, J., & Souza, A. M. C. (2011). First Mott lobe of bosons with local two- and three-body interactions. Physical Review A, 84(6). doi:10.1103/physreva.84.065601

Sowiński, T. (2012). Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions. Physical Review A, 85(6). doi:10.1103/physreva.85.065601

Hincapie-F, A. F., Franco, R., & Silva-Valencia, J. (2016). Mott lobes of theS=1Bose-Hubbard model with three-body interactions. Physical Review A, 94(3). doi:10.1103/physreva.94.033623

Dobrzyniecki, J., Li, X., Nielsen, A. E. B., & Sowiński, T. (2018). Effective three-body interactions for bosons in a double-well confinement. Physical Review A, 97(1). doi:10.1103/physreva.97.013609

Barranco, M., Guardiola, R., Hernández, S., Mayol, R., Navarro, J., & Pi, M. (2006). Helium Nanodroplets: An Overview. Journal of Low Temperature Physics, 142(1-2), 1-81. doi:10.1007/s10909-005-9267-0

Ho, T.-L., & Shenoy, V. B. (1996). Binary Mixtures of Bose Condensates of Alkali Atoms. Physical Review Letters, 77(16), 3276-3279. doi:10.1103/physrevlett.77.3276

Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., & Wieman, C. E. (1997). Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Physical Review Letters, 78(4), 586-589. doi:10.1103/physrevlett.78.586

Esry, B. D., Greene, C. H., Burke, Jr., J. P., & Bohn, J. L. (1997). Hartree-Fock Theory for Double Condensates. Physical Review Letters, 78(19), 3594-3597. doi:10.1103/physrevlett.78.3594

Busch, T., Cirac, J. I., Pérez-García, V. M., & Zoller, P. (1997). Stability and collective excitations of a two-component Bose-Einstein condensed gas: A moment approach. Physical Review A, 56(4), 2978-2983. doi:10.1103/physreva.56.2978

Ao, P., & Chui, S. T. (1998). Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases. Physical Review A, 58(6), 4836-4840. doi:10.1103/physreva.58.4836

Pu, H., & Bigelow, N. P. (1998). Properties of Two-Species Bose Condensates. Physical Review Letters, 80(6), 1130-1133. doi:10.1103/physrevlett.80.1130

Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., & Cornell, E. A. (1998). Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Physical Review Letters, 81(8), 1539-1542. doi:10.1103/physrevlett.81.1539

Gordon, D., & Savage, C. M. (1998). Excitation spectrum and instability of a two-species Bose-Einstein condensate. Physical Review A, 58(2), 1440-1444. doi:10.1103/physreva.58.1440

Goldstein, E. V., & Meystre, P. (1997). Quasiparticle instabilities in multicomponent atomic condensates. Physical Review A, 55(4), 2935-2940. doi:10.1103/physreva.55.2935

Öhberg, P., & Stenholm, S. (1998). Hartree-Fock treatment of the two-component Bose-Einstein condensate. Physical Review A, 57(2), 1272-1279. doi:10.1103/physreva.57.1272

Roy, A., Gautam, S., & Angom, D. (2014). Goldstone modes and bifurcations in phase-separated binary condensates at finite temperature. Physical Review A, 89(1). doi:10.1103/physreva.89.013617

Roy, A., & Angom, D. (2015). Thermal suppression of phase separation in condensate mixtures. Physical Review A, 92(1). doi:10.1103/physreva.92.011601

Cikojević, V., Markić, L. V., & Boronat, J. (2018). Harmonically trapped Bose–Bose mixtures: a quantum Monte Carlo study. New Journal of Physics, 20(8), 085002. doi:10.1088/1367-2630/aad6cc

Girardeau, M. (1960). Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1(6), 516-523. doi:10.1063/1.1703687

Tonks, L. (1936). The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres. Physical Review, 50(10), 955-963. doi:10.1103/physrev.50.955

Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction. Physical Review Letters, 19(23), 1312-1315. doi:10.1103/physrevlett.19.1312

Bethe, H. (1931). Zur Theorie der Metalle. Zeitschrift f�r Physik, 71(3-4), 205-226. doi:10.1007/bf01341708

Gaudin, M., & Caux, J.-S. (2009). The Bethe Wavefunction. doi:10.1017/cbo9781107053885

Petrov, D. S., Shlyapnikov, G. V., & Walraven, J. T. M. (2000). Regimes of Quantum Degeneracy in Trapped 1D Gases. Physical Review Letters, 85(18), 3745-3749. doi:10.1103/physrevlett.85.3745

Dunjko, V., Lorent, V., & Olshanii, M. (2001). Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between. Physical Review Letters, 86(24), 5413-5416. doi:10.1103/physrevlett.86.5413

Girardeau, M. D., & Wright, E. M. (2001). Bose-Fermi Variational Theory of the Bose-Einstein Condensate Crossover to the Tonks Gas. Physical Review Letters, 87(21). doi:10.1103/physrevlett.87.210401

Blume, D. (2002). Fermionization of a bosonic gas under highly elongated confinement: A diffusion quantum Monte Carlo study. Physical Review A, 66(5). doi:10.1103/physreva.66.053613

Gangardt, D. M., & Shlyapnikov, G. V. (2003). Stability and Phase Coherence of Trapped 1D Bose Gases. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.010401

Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D., & Shlyapnikov, G. V. (2003). Pair Correlations in a Finite-Temperature 1D Bose Gas. Physical Review Letters, 91(4). doi:10.1103/physrevlett.91.040403

Brand, J. (2004). A density-functional approach to fermionization in the 1D Bose gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7), S287-S300. doi:10.1088/0953-4075/37/7/073

Busch, T., & Huyet, G. (2003). Low-density, one-dimensional quantum gases in a split trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(12), 2553-2562. doi:10.1088/0953-4075/36/12/313

Murphy, D. S., & McCann, J. F. (2008). Low-energy excitations of a boson pair in a double-well trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063413

Goold, J., & Busch, T. (2008). Ground-state properties of a Tonks-Girardeau gas in a split trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063601

Yin, X., Hao, Y., Chen, S., & Zhang, Y. (2008). Ground-state properties of a few-boson system in a one-dimensional hard-wall split potential. Physical Review A, 78(1). doi:10.1103/physreva.78.013604

Goold, J., Krych, M., Idziaszek, Z., Fogarty, T., & Busch, T. (2010). An eccentrically perturbed Tonks–Girardeau gas. New Journal of Physics, 12(9), 093041. doi:10.1088/1367-2630/12/9/093041

Alon, O. E., & Cederbaum, L. S. (2005). Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Physical Review Letters, 95(14). doi:10.1103/physrevlett.95.140402

Chen, S., Cao, J., & Gu, S.-J. (2009). Two-component interacting Tonks-Girardeau gas in a one-dimensional optical lattice. EPL (Europhysics Letters), 85(6), 60004. doi:10.1209/0295-5075/85/60004

Batchelor, M. T., Guan, X. W., Oelkers, N., & Lee, C. (2005). The 1D interacting Bose gas in a hard wall box. Journal of Physics A: Mathematical and General, 38(36), 7787-7806. doi:10.1088/0305-4470/38/36/001

Hao, Y., Zhang, Y., Liang, J. Q., & Chen, S. (2006). Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap. Physical Review A, 73(6). doi:10.1103/physreva.73.063617

Hao, Y., Zhang, Y., Guan, X.-W., & Chen, S. (2009). Ground-state properties of interacting two-component Bose gases in a hard-wall trap. Physical Review A, 79(3). doi:10.1103/physreva.79.033607

Olshanii, M., & Jackson, S. G. (2015). An exactly solvable quantum four-body problem associated with the symmetries of an octacube. New Journal of Physics, 17(10), 105005. doi:10.1088/1367-2630/17/10/105005

Sakmann, K., Streltsov, A. I., Alon, O. E., & Cederbaum, L. S. (2005). Exact ground state of finite Bose-Einstein condensates on a ring. Physical Review A, 72(3). doi:10.1103/physreva.72.033613

Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Ultracold few-boson systems in a double-well trap. Physical Review A, 74(5). doi:10.1103/physreva.74.053612

Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Excitations of few-boson systems in one-dimensional harmonic and double wells. Physical Review A, 75(4). doi:10.1103/physreva.75.043608

Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Few-Boson Dynamics in Double Wells: From Single-Atom to Correlated Pair Tunneling. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.040401

Chatterjee, B., Brouzos, I., Cao, L., & Schmelcher, P. (2012). Few-boson tunneling dynamics of strongly correlated binary mixtures in a double well. Physical Review A, 85(1). doi:10.1103/physreva.85.013611

Dobrzyniecki, J., & Sowiński, T. (2016). Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential. The European Physical Journal D, 70(4). doi:10.1140/epjd/e2016-70016-x

Dobrzyniecki, J., & Sowiński, T. (2018). Effective two-mode description of a few ultra-cold bosons in a double-well potential. Physics Letters A, 382(6), 394-399. doi:10.1016/j.physleta.2017.12.027

Okopińska, A., & Kościk, P. (2009). Two-Boson Correlations in Various One-Dimensional Traps. Few-Body Systems, 45(2-4), 223-226. doi:10.1007/s00601-009-0031-x

García-March, M. A., Yuste, A., Juliá-Díaz, B., & Polls, A. (2015). Mesoscopic superpositions of Tonks-Girardeau states and the Bose-Fermi mapping. Physical Review A, 92(3). doi:10.1103/physreva.92.033621

Harshman, N. L. (2017). Identical Wells, Symmetry Breaking, and the Near-Unitary Limit. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1214-5

Harshman, N. L. (2017). Infinite barriers and symmetries for a few trapped particles in one dimension. Physical Review A, 95(5). doi:10.1103/physreva.95.053616

Matthies, C., Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Quantum dynamics of two bosons in an anharmonic trap: Collective versus internal excitations. Physical Review A, 76(2). doi:10.1103/physreva.76.023602

Girardeau, M. D., Wright, E. M., & Triscari, J. M. (2001). Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap. Physical Review A, 63(3). doi:10.1103/physreva.63.033601

Lenard, A. (1964). Momentum Distribution in the Ground State of the One‐Dimensional System of Impenetrable Bosons. Journal of Mathematical Physics, 5(7), 930-943. doi:10.1063/1.1704196

Lenard, A. (1966). One‐Dimensional Impenetrable Bosons in Thermal Equilibrium. Journal of Mathematical Physics, 7(7), 1268-1272. doi:10.1063/1.1705029

Vaidya, H. G., & Tracy, C. A. (1979). One-Particle Reduced Density Matrix of Impenetrable Bosons in One Dimension at Zero Temperature. Physical Review Letters, 42(1), 3-6. doi:10.1103/physrevlett.42.3

Forrester, P. J., Frankel, N. E., Garoni, T. M., & Witte, N. S. (2003). Finite one-dimensional impenetrable Bose systems: Occupation numbers. Physical Review A, 67(4). doi:10.1103/physreva.67.043607

Brun, Y., & Dubail, J. (2017). One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance. SciPost Physics, 2(2). doi:10.21468/scipostphys.2.2.012

Deuretzbacher, F., Bongs, K., Sengstock, K., & Pfannkuche, D. (2007). Evolution from a Bose-Einstein condensate to a Tonks-Girardeau gas: An exact diagonalization study. Physical Review A, 75(1). doi:10.1103/physreva.75.013614

Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Correlations in ultracold trapped few-boson systems: Transition from condensation to fermionization. Physical Review A, 74(6). doi:10.1103/physreva.74.063611

Ernst, T., Hallwood, D. W., Gulliksen, J., Meyer, H.-D., & Brand, J. (2011). Simulating strongly correlated multiparticle systems in a truncated Hilbert space. Physical Review A, 84(2). doi:10.1103/physreva.84.023623

Brouzos, I., & Schmelcher, P. (2012). Construction of Analytical Many-Body Wave Functions for Correlated Bosons in a Harmonic Trap. Physical Review Letters, 108(4). doi:10.1103/physrevlett.108.045301

Wilson, B., Foerster, A., Kuhn, C. C. N., Roditi, I., & Rubeni, D. (2014). A geometric wave function for a few interacting bosons in a harmonic trap. Physics Letters A, 378(16-17), 1065-1070. doi:10.1016/j.physleta.2014.02.009

Kościk, P. (2011). Quantum Correlations of a Few Bosons within a Harmonic Trap. Few-Body Systems, 52(1-2), 49-52. doi:10.1007/s00601-011-0239-4

Christensson, J., Forssén, C., Åberg, S., & Reimann, S. M. (2009). Effective-interaction approach to the many-boson problem. Physical Review A, 79(1). doi:10.1103/physreva.79.012707

Kościk, P. (2018). Optimized configuration interaction approach for trapped multiparticle systems interacting via contact forces. Physics Letters A, 382(36), 2561-2564. doi:10.1016/j.physleta.2018.06.025

Jeszenszki, P., Luo, H., Alavi, A., & Brand, J. (2018). Accelerating the convergence of exact diagonalization with the transcorrelated method: Quantum gas in one dimension with contact interactions. Physical Review A, 98(5). doi:10.1103/physreva.98.053627

Friedel, J. (1952). XIV. The distribution of electrons round impurities in monovalent metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(337), 153-189. doi:10.1080/14786440208561086

Friedel, J. (1958). Metallic alloys. Il Nuovo Cimento, 7(S2), 287-311. doi:10.1007/bf02751483

Minguzzi, A., Vignolo, P., & Tosi, M. P. (2002). High-momentum tail in the Tonks gas under harmonic confinement. Physics Letters A, 294(3-4), 222-226. doi:10.1016/s0375-9601(02)00042-7

Lapeyre, G. J., Girardeau, M. D., & Wright, E. M. (2002). Momentum distribution for a one-dimensional trapped gas of hard-core bosons. Physical Review A, 66(2). doi:10.1103/physreva.66.023606

Gudyma, A. I., Astrakharchik, G. E., & Zvonarev, M. B. (2015). Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas. Physical Review A, 92(2). doi:10.1103/physreva.92.021601

Garcia-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Busch, T., Boronat, J., & Polls, A. (2013). Sharp crossover from composite fermionization to phase separation in microscopic mixtures of ultracold bosons. Physical Review A, 88(6). doi:10.1103/physreva.88.063604

Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Composite fermionization of one-dimensional Bose-Bose mixtures. Physical Review A, 78(1). doi:10.1103/physreva.78.013629

Hao, Y. J., & Chen, S. (2008). Ground-state properties of interacting two-component Bose gases in a one-dimensional harmonic trap. The European Physical Journal D, 51(2), 261-266. doi:10.1140/epjd/e2008-00266-0

Pyzh, M., Krönke, S., Weitenberg, C., & Schmelcher, P. (2018). Spectral properties and breathing dynamics of a few-body Bose–Bose mixture in a 1D harmonic trap. New Journal of Physics, 20(1), 015006. doi:10.1088/1367-2630/aa9cb2

Li, Y.-Q., Gu, S.-J., Ying, Z.-J., & Eckern, U. (2003). Exact results of the ground state and excitation properties of a two-component interacting Bose system. Europhysics Letters (EPL), 61(3), 368-374. doi:10.1209/epl/i2003-00183-2

Girardeau, M. D., & Minguzzi, A. (2007). Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides. Physical Review Letters, 99(23). doi:10.1103/physrevlett.99.230402

Deuretzbacher, F., Fredenhagen, K., Becker, D., Bongs, K., Sengstock, K., & Pfannkuche, D. (2008). Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases. Physical Review Letters, 100(16). doi:10.1103/physrevlett.100.160405

Fang, B., Vignolo, P., Gattobigio, M., Miniatura, C., & Minguzzi, A. (2011). Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture. Physical Review A, 84(2). doi:10.1103/physreva.84.023626

GaudinN, M., & Derrida, B. (1975). Solution exacte d’un problème modèle à trois corps. Etat lié. Journal de Physique, 36(12), 1183-1197. doi:10.1051/jphys:0197500360120118300

Zinner, N. T., Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Valiente, M. (2014). Fractional energy states of strongly interacting bosons in one dimension. EPL (Europhysics Letters), 107(6), 60003. doi:10.1209/0295-5075/107/60003

García-March, M.-Á., Ferrando, A., Zacarés, M., Vijande, J., & Carr, L. D. (2009). Angular pseudomomentum theory for the generalized nonlinear Schrödinger equation in discrete rotational symmetry media. Physica D: Nonlinear Phenomena, 238(15), 1432-1438. doi:10.1016/j.physd.2008.12.007

García-March, M.-Á., Ferrando, A., Zacarés, M., Sahu, S., & Ceballos-Herrera, D. E. (2009). Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media. Physical Review A, 79(5). doi:10.1103/physreva.79.053820

García-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Boronat, J., & Polls, A. (2014). Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Physical Review A, 90(6). doi:10.1103/physreva.90.063605

Dehkharghani, A., Volosniev, A., Lindgren, J., Rotureau, J., Forssén, C., Fedorov, D., … Zinner, N. (2015). Quantum magnetism in strongly interacting one-dimensional spinor Bose systems. Scientific Reports, 5(1). doi:10.1038/srep10675

Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2016). Impenetrable mass-imbalanced particles in one-dimensional harmonic traps. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(8), 085301. doi:10.1088/0953-4075/49/8/085301

Hao, Y., & Chen, S. (2009). Density-functional theory of two-component Bose gases in one-dimensional harmonic traps. Physical Review A, 80(4). doi:10.1103/physreva.80.043608

Garcia-March, M. A., & Busch, T. (2013). Quantum gas mixtures in different correlation regimes. Physical Review A, 87(6). doi:10.1103/physreva.87.063633

Kolomeisky, E. B., Newman, T. J., Straley, J. P., & Qi, X. (2000). Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation. Physical Review Letters, 85(6), 1146-1149. doi:10.1103/physrevlett.85.1146

Tanatar, B., & Erkan, K. (2000). Strongly interacting one-dimensional Bose-Einstein condensates in harmonic traps. Physical Review A, 62(5). doi:10.1103/physreva.62.053601

Girardeau, M. D., & Wright, E. M. (2000). Breakdown of Time-Dependent Mean-Field Theory for a One-Dimensional Condensate of Impenetrable Bosons. Physical Review Letters, 84(23), 5239-5242. doi:10.1103/physrevlett.84.5239

Barfknecht, R. E., Dehkharghani, A. S., Foerster, A., & Zinner, N. T. (2016). Correlation properties of a three-body bosonic mixture in a harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(13), 135301. doi:10.1088/0953-4075/49/13/135301

Volosniev, A. G. (2017). Strongly Interacting One-dimensional Systems with Small Mass Imbalance. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1227-0

Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2015). Quantum impurity in a one-dimensional trapped Bose gas. Physical Review A, 92(3). doi:10.1103/physreva.92.031601

Mehta, N. P. (2014). Born-Oppenheimer study of two-component few-particle systems under one-dimensional confinement. Physical Review A, 89(5). doi:10.1103/physreva.89.052706

Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623

Will, S., Best, T., Braun, S., Schneider, U., & Bloch, I. (2011). Coherent Interaction of a Single Fermion with a Small Bosonic Field. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115305

Grusdt, F., Astrakharchik, G. E., & Demler, E. (2017). Bose polarons in ultracold atoms in one dimension: beyond the Fröhlich paradigm. New Journal of Physics, 19(10), 103035. doi:10.1088/1367-2630/aa8a2e

Barfknecht, R. E., Foerster, A., & Zinner, N. T. (2018). Emergence of junction dynamics in a strongly interacting Bose mixture. New Journal of Physics, 20(6), 063014. doi:10.1088/1367-2630/aac718

Mehta, N. P., & Morehead, C. D. (2015). Few-boson processes in the presence of an attractive impurity under one-dimensional confinement. Physical Review A, 92(4). doi:10.1103/physreva.92.043616

Harshman, N. L., Olshanii, M., Dehkharghani, A. S., Volosniev, A. G., Jackson, S. G., & Zinner, N. T. (2017). Integrable Families of Hard-Core Particles with Unequal Masses in a One-Dimensional Harmonic Trap. Physical Review X, 7(4). doi:10.1103/physrevx.7.041001

Granger, B. E., & Blume, D. (2004). Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement. Physical Review Letters, 92(13). doi:10.1103/physrevlett.92.133202

Girardeau, M. D., & Olshanii, M. (2004). Theory of spinor Fermi and Bose gases in tight atom waveguides. Physical Review A, 70(2). doi:10.1103/physreva.70.023608

Yang, L., & Pu, H. (2016). Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations. Physical Review A, 94(3). doi:10.1103/physreva.94.033614

Yang, L., & Pu, H. (2017). One-body density matrix and momentum distribution of strongly interacting one-dimensional spinor quantum gases. Physical Review A, 95(5). doi:10.1103/physreva.95.051602

Wang, H., & Zhang, Y. (2013). Density-functional theory for the spin-1 bosons in a one-dimensional harmonic trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023626

Hao, Y. (2016). The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction. The European Physical Journal D, 70(5). doi:10.1140/epjd/e2016-70076-x

Hao, Y. (2017). Ground state properties of anti-ferromagnetic spinor Bose gases in one dimension. The European Physical Journal D, 71(3). doi:10.1140/epjd/e2017-70483-5

Jen, H. H., & Yip, S.-K. (2017). Spin-incoherent Luttinger liquid of one-dimensional spin-1 Tonks-Girardeau Bose gases: Spin-dependent properties. Physical Review A, 95(5). doi:10.1103/physreva.95.053631

Gharashi, S. E., Daily, K. M., & Blume, D. (2012). Threes-wave-interacting fermions under anisotropic harmonic confinement: Dimensional crossover of energetics and virial coefficients. Physical Review A, 86(4). doi:10.1103/physreva.86.042702

Wille, E., Spiegelhalder, F. M., Kerner, G., Naik, D., Trenkwalder, A., Hendl, G., … Julienne, P. S. (2008). Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties ofLi6andK40. Physical Review Letters, 100(5). doi:10.1103/physrevlett.100.053201

Tiecke, T. G., Goosen, M. R., Ludewig, A., Gensemer, S. D., Kraft, S., Kokkelmans, S. J. J. M. F., & Walraven, J. T. M. (2010). Broad Feshbach Resonance in theLi6−K40Mixture. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.053202

Guan, X.-W., Batchelor, M. T., & Lee, J.-Y. (2008). Magnetic ordering and quantum statistical effects in strongly repulsive Fermi-Fermi and Bose-Fermi mixtures. Physical Review A, 78(2). doi:10.1103/physreva.78.023621

Sowiński, T. (2018). Ground-State Magnetization in Mixtures of a Few Ultra-Cold Fermions in One-Dimensional Traps. Condensed Matter, 3(1), 7. doi:10.3390/condmat3010007

Koutentakis, G. M., Mistakidis, S. I., & Schmelcher, P. (2019). Probing ferromagnetic order in few-fermion correlated spin-flip dynamics. New Journal of Physics, 21(5), 053005. doi:10.1088/1367-2630/ab14ba

Barasiński, A., Leoński, W., & Sowiński, T. (2014). Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices. Journal of the Optical Society of America B, 31(8), 1845. doi:10.1364/josab.31.001845

Carvalho, D. W. S., Foerster, A., & Gusmão, M. A. (2015). Ground states of spin-1 bosons in asymmetric double wells. Physical Review A, 91(3). doi:10.1103/physreva.91.033608

Harshman, N. L. (2014). Spectroscopy for a few atoms harmonically trapped in one dimension. Physical Review A, 89(3). doi:10.1103/physreva.89.033633

Pęcak, D., Gajda, M., & Sowiński, T. (2017). Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures. Few-Body Systems, 58(6). doi:10.1007/s00601-017-1321-3

Bugnion, P. O., & Conduit, G. J. (2013). Exploring exchange mechanisms with a cold-atom gas. Physical Review A, 88(1). doi:10.1103/physreva.88.013601

Sowiński, T., Gajda, M., & Rzażewski, K. (2016). Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential. EPL (Europhysics Letters), 113(5), 56003. doi:10.1209/0295-5075/113/56003

Yannouleas, C., Brandt, B. B., & Landman, U. (2016). Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg andt–Jmodels. New Journal of Physics, 18(7), 073018. doi:10.1088/1367-2630/18/7/073018

Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2018). Correlated tunneling dynamics of an ultracold Fermi-Fermi mixture confined in a double well. Physical Review A, 98(5). doi:10.1103/physreva.98.053614

Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2019). Phase-separation dynamics induced by an interaction quench of a correlated Fermi-Fermi mixture in a double well. Physical Review A, 99(1). doi:10.1103/physreva.99.013605

Barfknecht, R. E., Brouzos, I., & Foerster, A. (2015). Contact and static structure factor for bosonic and fermionic mixtures. Physical Review A, 91(4). doi:10.1103/physreva.91.043640

Rontani, M. (2013). Pair tunneling of two atoms out of a trap. Physical Review A, 88(4). doi:10.1103/physreva.88.043633

Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406

Pęcak, D., & Sowiński, T. (2016). Few strongly interacting ultracold fermions in one-dimensional traps of different shapes. Physical Review A, 94(4). doi:10.1103/physreva.94.042118

Pilati, S., Barbiero, L., Fazio, R., & Dell’Anna, L. (2017). One-dimensional repulsive Fermi gas in a tunable periodic potential. Physical Review A, 96(2). doi:10.1103/physreva.96.021601

Mathey, L., Altman, E., & Vishwanath, A. (2008). Noise Correlations in One-Dimensional Systems of Ultracold Fermions. Physical Review Letters, 100(24). doi:10.1103/physrevlett.100.240401

Mathey, L., Vishwanath, A., & Altman, E. (2009). Noise correlations in low-dimensional systems of ultracold atoms. Physical Review A, 79(1). doi:10.1103/physreva.79.013609

Brandt, B. B., Yannouleas, C., & Landman, U. (2017). Two-point momentum correlations of few ultracold quasi-one-dimensional trapped fermions: Diffraction patterns. Physical Review A, 96(5). doi:10.1103/physreva.96.053632

Brandt, B. B., Yannouleas, C., & Landman, U. (2018). Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms. Physical Review A, 97(5). doi:10.1103/physreva.97.053601

Yannouleas, C., & Landman, U. (2019). Third-order momentum correlation interferometry maps for entangled quantal states of three singly trapped massive ultracold fermions. Physical Review A, 100(2). doi:10.1103/physreva.100.023618

Pagano, G., Mancini, M., Cappellini, G., Lombardi, P., Schäfer, F., Hu, H., … Fallani, L. (2014). A one-dimensional liquid of fermions with tunable spin. Nature Physics, 10(3), 198-201. doi:10.1038/nphys2878

Guan, X.-W., Ma, Z.-Q., & Wilson, B. (2012). One-dimensional multicomponent fermions withδ-function interaction in strong- and weak-coupling limits:κ-component Fermi gas. Physical Review A, 85(3). doi:10.1103/physreva.85.033633

Beverland, M. E., Alagic, G., Martin, M. J., Koller, A. P., Rey, A. M., & Gorshkov, A. V. (2016). Realizing exactly solvableSU(N)magnets with thermal atoms. Physical Review A, 93(5). doi:10.1103/physreva.93.051601

Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2016). High-momentum tails as magnetic-structure probes for strongly correlatedSU(κ)fermionic mixtures in one-dimensional traps. Physical Review A, 94(5). doi:10.1103/physreva.94.053614

Hoffman, M. D., Loheac, A. C., Porter, W. J., & Drut, J. E. (2017). Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions. Physical Review A, 95(3). doi:10.1103/physreva.95.033602

Laird, E. K., Shi, Z.-Y., Parish, M. M., & Levinsen, J. (2017). SU( N ) fermions in a one-dimensional harmonic trap. Physical Review A, 96(3). doi:10.1103/physreva.96.032701

Xu, J., Feng, T., & Gu, Q. (2017). Spin dynamics of large-spin fermions in a harmonic trap. Annals of Physics, 379, 175-186. doi:10.1016/j.aop.2017.02.003

Decamp, J., Armagnat, P., Fang, B., Albert, M., Minguzzi, A., & Vignolo, P. (2016). Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides. New Journal of Physics, 18(5), 055011. doi:10.1088/1367-2630/18/5/055011

Lieb, E., & Mattis, D. (1962). Theory of Ferromagnetism and the Ordering of Electronic Energy Levels. Physical Review, 125(1), 164-172. doi:10.1103/physrev.125.164

Pan, L., Liu, Y., Hu, H., Zhang, Y., & Chen, S. (2017). Exact ordering of energy levels for one-dimensional interacting Fermi gases with SU (N) symmetry. Physical Review B, 96(7). doi:10.1103/physrevb.96.075149

Cazalilla, M. A., & Rey, A. M. (2014). Ultracold Fermi gases with emergent SU(N) symmetry. Reports on Progress in Physics, 77(12), 124401. doi:10.1088/0034-4885/77/12/124401

Girardeau, M. D. (2010). Two super-Tonks-Girardeau states of a trapped one-dimensional spinor Fermi gas. Physical Review A, 82(1). doi:10.1103/physreva.82.011607

Guan, Q., Yin, X. Y., Ebrahim Gharashi, S., & Blume, D. (2014). Energy spectrum of a harmonically trapped two-atom system with spin–orbit coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(16), 161001. doi:10.1088/0953-4075/47/16/161001

Schillaci, C. D., & Luu, T. C. (2015). Energy spectra of two interacting fermions with spin-orbit coupling in a harmonic trap. Physical Review A, 91(4). doi:10.1103/physreva.91.043606

Cui, X., & Ho, T.-L. (2014). Spin-orbit-coupled one-dimensional Fermi gases with infinite repulsion. Physical Review A, 89(1). doi:10.1103/physreva.89.013629

Yin, X. Y., Gopalakrishnan, S., & Blume, D. (2014). Harmonically trapped two-atom systems: Interplay of short-ranges-wave interaction and spin-orbit coupling. Physical Review A, 89(3). doi:10.1103/physreva.89.033606

Guan, Q., & Blume, D. (2015). Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling. Physical Review A, 92(2). doi:10.1103/physreva.92.023641

Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Zinner, N. T., & Valiente, M. (2013). Multicomponent Strongly Interacting Few-Fermion Systems in One Dimension. Few-Body Systems, 55(8-10), 839-842. doi:10.1007/s00601-013-0776-0

Kestner, J. P., & Duan, L.-M. (2007). Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap. Physical Review A, 76(3). doi:10.1103/physreva.76.033611

D’Amico, P., & Rontani, M. (2014). Three interacting atoms in a one-dimensional trap: a benchmark system for computational approaches. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(6), 065303. doi:10.1088/0953-4075/47/6/065303

Loft, N. J. S., Dehkharghani, A. S., Mehta, N. P., Volosniev, A. G., & Zinner, N. T. (2015). A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap. The European Physical Journal D, 69(3). doi:10.1140/epjd/e2015-50845-9

Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Hyperspherical treatment of strongly-interacting few-fermion systems in one dimension. The European Physical Journal Special Topics, 224(3), 585-590. doi:10.1140/epjst/e2015-02390-2

McGuire, J. B. (1965). Interacting Fermions in One Dimension. I. Repulsive Potential. Journal of Mathematical Physics, 6(3), 432-439. doi:10.1063/1.1704291

McGuire, J. B. (1966). Interacting Fermions in One Dimension. II. Attractive Potential. Journal of Mathematical Physics, 7(1), 123-132. doi:10.1063/1.1704798

Astrakharchik, G. E., & Brouzos, I. (2013). Trapped one-dimensional ideal Fermi gas with a single impurity. Physical Review A, 88(2). doi:10.1103/physreva.88.021602

Gharashi, S. E., Yin, X. Y., Yan, Y., & Blume, D. (2015). One-dimensional Fermi gas with a single impurity in a harmonic trap: Perturbative description of the upper branch. Physical Review A, 91(1). doi:10.1103/physreva.91.013620

Pricoupenko, L., & Castin, Y. (2004). One particle in a box: The simplest model for a Fermi gas in the unitary limit. Physical Review A, 69(5). doi:10.1103/physreva.69.051601

Mistakidis, S. I., Katsimiga, G. C., Koutentakis, G. M., & Schmelcher, P. (2019). Repulsive Fermi polarons and their induced interactions in binary mixtures of ultracold atoms. New Journal of Physics, 21(4), 043032. doi:10.1088/1367-2630/ab1045

Gharashi, S. E., & Blume, D. (2013). Correlations of the Upper Branch of 1D Harmonically Trapped Two-Component Fermi Gases. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045302

Sowiński, T., Grass, T., Dutta, O., & Lewenstein, M. (2013). Few interacting fermions in a one-dimensional harmonic trap. Physical Review A, 88(3). doi:10.1103/physreva.88.033607

Bugnion, P. O., & Conduit, G. J. (2013). Ferromagnetic spin correlations in a few-fermion system. Physical Review A, 87(6). doi:10.1103/physreva.87.060502

Guan, L., Chen, S., Wang, Y., & Ma, Z.-Q. (2009). Exact Solution for Infinitely Strongly Interacting Fermi Gases in Tight Waveguides. Physical Review Letters, 102(16). doi:10.1103/physrevlett.102.160402

Płodzień, M., Demkowicz-Dobrzański, R., & Sowiński, T. (2018). Few-fermion thermometry. Physical Review A, 97(6). doi:10.1103/physreva.97.063619

Lindgren, E. J., Rotureau, J., Forssén, C., Volosniev, A. G., & Zinner, N. T. (2014). Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap. New Journal of Physics, 16(6), 063003. doi:10.1088/1367-2630/16/6/063003

Carbonell-Coronado, C., Soto, F. D., & Gordillo, M. C. (2016). Ordering in one-dimensional few-fermion clusters with repulsive interactions. New Journal of Physics, 18(2), 025015. doi:10.1088/1367-2630/18/2/025015

Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2014). Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Physical Review A, 90(1). doi:10.1103/physreva.90.013611

Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2014). Strongly interacting confined quantum systems in one dimension. Nature Communications, 5(1). doi:10.1038/ncomms6300

Yang, L., Guan, L., & Pu, H. (2015). Strongly interacting quantum gases in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.043634

Levinsen, J., Massignan, P., Bruun, G. M., & Parish, M. M. (2015). Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential. Science Advances, 1(6), e1500197. doi:10.1126/sciadv.1500197

Marchukov, O. V., Eriksen, E. H., Midtgaard, J. M., Kalaee, A. A. S., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2016). Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results. The European Physical Journal D, 70(2). doi:10.1140/epjd/e2016-60489-x

Loft, N. J. S., Kristensen, L. B., Thomsen, A. E., Volosniev, A. G., & Zinner, N. T. (2016). CONAN—The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension. Computer Physics Communications, 209, 171-182. doi:10.1016/j.cpc.2016.08.021

Deuretzbacher, F., & Santos, L. (2017). Tuning an effective spin chain of three strongly interacting one-dimensional fermions with the transversal confinement. Physical Review A, 96(1). doi:10.1103/physreva.96.013629

Volosniev, A. G., Petrosyan, D., Valiente, M., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Engineering the dynamics of effective spin-chain models for strongly interacting atomic gases. Physical Review A, 91(2). doi:10.1103/physreva.91.023620

Loft, N. J. S., Marchukov, O. V., Petrosyan, D., & Zinner, N. T. (2016). Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer. New Journal of Physics, 18(4), 045011. doi:10.1088/1367-2630/18/4/045011

Marchukov, O. V., Volosniev, A. G., Valiente, M., Petrosyan, D., & Zinner, N. T. (2016). Quantum spin transistor with a Heisenberg spin chain. Nature Communications, 7(1). doi:10.1038/ncomms13070

Liu, Y., Chen, S., & Zhang, Y. (2017). Spectroscopy and spin dynamics for strongly interacting few-spinor bosons in one-dimensional traps. Physical Review A, 95(4). doi:10.1103/physreva.95.043628

Matveev, K. A., & Furusaki, A. (2008). Spectral Functions of Strongly Interacting Isospin-12Bosons in One Dimension. Physical Review Letters, 101(17). doi:10.1103/physrevlett.101.170403

Massignan, P., Levinsen, J., & Parish, M. M. (2015). Magnetism in Strongly Interacting One-Dimensional Quantum Mixtures. Physical Review Letters, 115(24). doi:10.1103/physrevlett.115.247202

Yang, L., & Cui, X. (2016). Effective spin-chain model for strongly interacting one-dimensional atomic gases with an arbitrary spin. Physical Review A, 93(1). doi:10.1103/physreva.93.013617

Söffing, S. A., Bortz, M., & Eggert, S. (2011). Density profile of interacting fermions in a one-dimensional optical trap. Physical Review A, 84(2). doi:10.1103/physreva.84.021602

Rotureau, J. (2013). Interaction for the trapped fermi gas from a unitary transformation of the exact two-body spectrum. The European Physical Journal D, 67(7). doi:10.1140/epjd/e2013-40156-8

Haugset, T., & Haugerud, H. (1998). Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions. Physical Review A, 57(5), 3809-3817. doi:10.1103/physreva.57.3809

Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Massignan, P., … Moszynski, R. (2015). Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment. New Journal of Physics, 17(11), 115001. doi:10.1088/1367-2630/17/11/115001

Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Moszynski, R., … Massignan, P. (2015). Crossover between few and many fermions in a harmonic trap. Physical Review A, 92(6). doi:10.1103/physreva.92.061601

Kohn, W. (1999). Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 71(5), 1253-1266. doi:10.1103/revmodphys.71.1253

Xianlong, G., Polini, M., Asgari, R., & Tosi, M. P. (2006). Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps. Physical Review A, 73(3). doi:10.1103/physreva.73.033609

Rammelmüller, L., Porter, W. J., Drut, J. E., & Braun, J. (2017). Surmounting the sign problem in nonrelativistic calculations: A case study with mass-imbalanced fermions. Physical Review D, 96(9). doi:10.1103/physrevd.96.094506

Rammelmüller, L., Drut, J. E., & Braun, J. (2018). A complex Langevin approach to ultracold fermions. Journal of Physics: Conference Series, 1041, 012006. doi:10.1088/1742-6596/1041/1/012006

Andersen, M. E. S., Dehkharghani, A. S., Volosniev, A. G., Lindgren, E. J., & Zinner, N. T. (2016). An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems. Scientific Reports, 6(1). doi:10.1038/srep28362

Pęcak, D., Dehkharghani, A. S., Zinner, N. T., & Sowiński, T. (2017). Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach. Physical Review A, 95(5). doi:10.1103/physreva.95.053632

Bellotti, F. F., Dehkharghani, A. S., & Zinner, N. T. (2017). Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps. The European Physical Journal D, 71(2). doi:10.1140/epjd/e2017-70650-8

Rubeni, D., Foerster, A., & Roditi, I. (2012). Two interacting fermions in a one-dimensional harmonic trap: Matching the Bethe ansatz and variational approaches. Physical Review A, 86(4). doi:10.1103/physreva.86.043619

Jastrow, R. (1955). Many-Body Problem with Strong Forces. Physical Review, 98(5), 1479-1484. doi:10.1103/physrev.98.1479

Brouzos, I., & Schmelcher, P. (2013). Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach. Physical Review A, 87(2). doi:10.1103/physreva.87.023605

Kościk, P., Płodzień, M., & Sowiński, T. (2018). Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement. EPL (Europhysics Letters), 123(3), 36001. doi:10.1209/0295-5075/123/36001

Cooper, L. N. (1956). Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104(4), 1189-1190. doi:10.1103/physrev.104.1189

Liu, X.-J., Hu, H., & Drummond, P. D. (2010). Three attractively interacting fermions in a harmonic trap: Exact solution, ferromagnetism, and high-temperature thermodynamics. Physical Review A, 82(2). doi:10.1103/physreva.82.023619

Sowiński, T., Gajda, M., & Rzażewski, K. (2015). Pairing in a system of a few attractive fermions in a harmonic trap. EPL (Europhysics Letters), 109(2), 26005. doi:10.1209/0295-5075/109/26005

D’Amico, P., & Rontani, M. (2015). Pairing of a few Fermi atoms in one dimension. Physical Review A, 91(4). doi:10.1103/physreva.91.043610

Hofmann, J., Lobos, A. M., & Galitski, V. (2016). Parity effect in a mesoscopic Fermi gas. Physical Review A, 93(6). doi:10.1103/physreva.93.061602

Matveev, K. A., & Larkin, A. I. (1997). Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains. Physical Review Letters, 78(19), 3749-3752. doi:10.1103/physrevlett.78.3749

Sowiński, T. (2015). Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap. Few-Body Systems, 56(10), 659-663. doi:10.1007/s00601-015-1017-5

Bugnion, P. O., Lofthouse, J. A., & Conduit, G. J. (2013). Inhomogeneous State of Few-Fermion Superfluids. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045301

Berger, C. E., Anderson, E. R., & Drut, J. E. (2015). Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice Monte Carlo calculations. Physical Review A, 91(5). doi:10.1103/physreva.91.053618

McKenney, J. R., Shill, C. R., Porter, W. J., & Drut, J. E. (2016). Ground-state energy, density profiles, and momentum distribution of attractively interacting 1D Fermi gases with hard-wall boundaries: a Monte Carlo study. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(22), 225001. doi:10.1088/0953-4075/49/22/225001

Tan, S. (2008). Energetics of a strongly correlated Fermi gas. Annals of Physics, 323(12), 2952-2970. doi:10.1016/j.aop.2008.03.004

Rammelmüller, L., Porter, W. J., Braun, J., & Drut, J. E. (2017). Evolution from few- to many-body physics in one-dimensional Fermi systems: One- and two-body density matrices and particle-partition entanglement. Physical Review A, 96(3). doi:10.1103/physreva.96.033635

Hao, Y., Zhang, Y., & Chen, S. (2007). One-dimensional fermionic gases with attractivep-wave interaction in a hard-wall trap. Physical Review A, 76(6). doi:10.1103/physreva.76.063601

Pȩcak, D., Gajda, M., & Sowiński, T. (2016). Two-flavour mixture of a few fermions of different mass in a one-dimensional harmonic trap. New Journal of Physics, 18(1), 013030. doi:10.1088/1367-2630/18/1/013030

Cui, X., & Ho, T.-L. (2013). Phase Separation in Mixtures of Repulsive Fermi Gases Driven by Mass Difference. Physical Review Letters, 110(16). doi:10.1103/physrevlett.110.165302

Cui, X., & Ho, T.-L. (2014). Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases. Physical Review A, 89(2). doi:10.1103/physreva.89.023611

Fratini, E., & Pilati, S. (2014). Zero-temperature equation of state and phase diagram of repulsive fermionic mixtures. Physical Review A, 90(2). doi:10.1103/physreva.90.023605

Blume, D. (2008). Small mass- and trap-imbalanced two-component Fermi systems. Physical Review A, 78(1). doi:10.1103/physreva.78.013613

Baranov, M. A., Lobo, C., & Shlyapnikov, G. V. (2008). Superfluid pairing between fermions with unequal masses. Physical Review A, 78(3). doi:10.1103/physreva.78.033620

Stewart, G. R. (1984). Heavy-fermion systems. Reviews of Modern Physics, 56(4), 755-787. doi:10.1103/revmodphys.56.755

Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P., & Törmä, P. (2018). The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Reports on Progress in Physics, 81(4), 046401. doi:10.1088/1361-6633/aaa4ad

Pęcak, D., & Sowiński, T. (2019). Intercomponent correlations in attractive one-dimensional mass-imbalanced few-body mixtures. Physical Review A, 99(4). doi:10.1103/physreva.99.043612

Onofrio, R. (2016). Cooling and thermometry of atomic Fermi gases. Physics-Uspekhi, 59(11), 1129-1153. doi:10.3367/ufne.2016.07.037873

Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles, J., & Salomon, C. (2001). Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea. Physical Review Letters, 87(8). doi:10.1103/physrevlett.87.080403

Truscott, A. G. (2001). Observation of Fermi Pressure in a Gas of Trapped Atoms. Science, 291(5513), 2570-2572. doi:10.1126/science.1059318

Fukuhara, T., Sugawa, S., Takasu, Y., & Takahashi, Y. (2009). All-optical formation of quantum degenerate mixtures. Physical Review A, 79(2). doi:10.1103/physreva.79.021601

Wu, C.-H., Santiago, I., Park, J. W., Ahmadi, P., & Zwierlein, M. W. (2011). Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Physical Review A, 84(1). doi:10.1103/physreva.84.011601

Roati, G., Riboli, F., Modugno, G., & Inguscio, M. (2002). Fermi-Bose Quantum DegenerateK40−R87bMixture with Attractive Interaction. Physical Review Letters, 89(15). doi:10.1103/physrevlett.89.150403

Hadzibabic, Z., Stan, C. A., Dieckmann, K., Gupta, S., Zwierlein, M. W., Görlitz, A., & Ketterle, W. (2002). Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases. Physical Review Letters, 88(16). doi:10.1103/physrevlett.88.160401

DeSalvo, B. J., Patel, K., Johansen, J., & Chin, C. (2017). Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. Physical Review Letters, 119(23). doi:10.1103/physrevlett.119.233401

Imambekov, A., & Demler, E. (2006). Applications of exact solution for strongly interacting one-dimensional Bose–Fermi mixture: Low-temperature correlation functions, density profiles, and collective modes. Annals of Physics, 321(10), 2390-2437. doi:10.1016/j.aop.2005.11.017

Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2017). Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures. Physical Review A, 95(4). doi:10.1103/physreva.95.043630

Fang, B., Vignolo, P., Miniatura, C., & Minguzzi, A. (2009). Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap. Physical Review A, 79(2). doi:10.1103/physreva.79.023623

Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2017). Strongly correlated one-dimensional Bose–Fermi quantum mixtures: symmetry and correlations. New Journal of Physics, 19(12), 125001. doi:10.1088/1367-2630/aa94ef

Deuretzbacher, F., Becker, D., & Santos, L. (2016). Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases. Physical Review A, 94(2). doi:10.1103/physreva.94.023606

Dehkharghani, A. S., Bellotti, F. F., & Zinner, N. T. (2017). Analytical and numerical studies of Bose–Fermi mixtures in a one-dimensional harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(14), 144002. doi:10.1088/1361-6455/aa7797

Wang, H., Hao, Y., & Zhang, Y. (2012). Density-functional theory for one-dimensional harmonically trapped Bose-Fermi mixture. Physical Review A, 85(5). doi:10.1103/physreva.85.053630

Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Bunching-antibunching crossover in harmonically trapped few-body Bose-Fermi mixtures. Physical Review A, 98(2). doi:10.1103/physreva.98.023602

Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Entanglement Induced Interactions in Binary Mixtures. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043401

Lelas, K., Jukić, D., & Buljan, H. (2009). Ground-state properties of a one-dimensional strongly interacting Bose-Fermi mixture in a double-well potential. Physical Review A, 80(5). doi:10.1103/physreva.80.053617

Lü, X., Yin, X., & Zhang, Y. (2010). Hard-core Bose-Fermi mixture in one-dimensional split traps. Physical Review A, 81(4). doi:10.1103/physreva.81.043607

Chen, S., Cao, J., & Gu, S.-J. (2010). Mixture of Tonks-Girardeau gas and Fermi gas in one-dimensional optical lattices. Physical Review A, 82(5). doi:10.1103/physreva.82.053625

Šeba, P. (1986). Some remarks on the δ′-interaction in one dimension. Reports on Mathematical Physics, 24(1), 111-120. doi:10.1016/0034-4877(86)90045-5

Sen, D. (2003). The fermionic limit of the  -function Bose gas: a pseudopotential approach. Journal of Physics A: Mathematical and General, 36(27), 7517-7531. doi:10.1088/0305-4470/36/27/305

Kanjilal, K., & Blume, D. (2004). Nondivergent pseudopotential treatment of spin-polarized fermions under one- and three-dimensional harmonic confinement. Physical Review A, 70(4). doi:10.1103/physreva.70.042709

Cheon, T., & Shigehara, T. (1999). Fermion-Boson Duality of One-Dimensional Quantum Particles with Generalized Contact Interactions. Physical Review Letters, 82(12), 2536-2539. doi:10.1103/physrevlett.82.2536

Cui, X. (2016). Universal one-dimensional atomic gases near odd-wave resonance. Physical Review A, 94(4). doi:10.1103/physreva.94.043636

Sun, B., Zhou, D. L., & You, L. (2006). Entanglement between two interacting atoms in a one-dimensional harmonic trap. Physical Review A, 73(1). doi:10.1103/physreva.73.012336

Bender, S. A., Erker, K. D., & Granger, B. E. (2005). Exponentially Decaying Correlations in a Gas of Strongly Interacting Spin-Polarized 1D Fermions with Zero-Range Interactions. Physical Review Letters, 95(23). doi:10.1103/physrevlett.95.230404

Muth, D., Fleischhauer, M., & Schmidt, B. (2010). Discretized versus continuous models ofp-wave interacting fermions in one dimension. Physical Review A, 82(1). doi:10.1103/physreva.82.013602

Zhang, Z. D., Astrakharchik, G. E., Aveline, D. C., Choi, S., Perrin, H., Bergeman, T. H., & Olshanii, M. (2014). Breakdown of scale invariance in the vicinity of the Tonks-Girardeau limit. Physical Review A, 89(6). doi:10.1103/physreva.89.063616

Hu, H., Pan, L., & Chen, S. (2016). Strongly interacting one-dimensional quantum gas mixtures with weakp-wave interactions. Physical Review A, 93(3). doi:10.1103/physreva.93.033636

Yang, L., Guan, X., & Cui, X. (2016). Engineering quantum magnetism in one-dimensional trapped Fermi gases withp-wave interactions. Physical Review A, 93(5). doi:10.1103/physreva.93.051605

Trautmann, A., Ilzhöfer, P., Durastante, G., Politi, C., Sohmen, M., Mark, M. J., & Ferlaino, F. (2018). Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms. Physical Review Letters, 121(21). doi:10.1103/physrevlett.121.213601

Sinha, S., & Santos, L. (2007). Cold Dipolar Gases in Quasi-One-Dimensional Geometries. Physical Review Letters, 99(14). doi:10.1103/physrevlett.99.140406

Deuretzbacher, F., Cremon, J. C., & Reimann, S. M. (2010). Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap. Physical Review A, 81(6). doi:10.1103/physreva.81.063616

James, D. F. V. (1998). Quantum dynamics of cold trapped ions with application to quantum computation. Applied Physics B: Lasers and Optics, 66(2), 181-190. doi:10.1007/s003400050373

Kościk, P. (2015). The von Neumann entanglement entropy for Wigner-crystal states in one dimensional N-particle systems. Physics Letters A, 379(4), 293-298. doi:10.1016/j.physleta.2014.12.001

Kościk, P. (2017). Fermionized Dipolar Bosons Trapped in a Harmonic Trap. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1229-y

Oldham, K. B. (1968). Approximations for the x expx 2 erfc x Function. Mathematics of Computation, 22(102), 454. doi:10.2307/2004681

Abad, M., Guilleumas, M., Mayol, R., Pi, M., & Jezek, D. M. (2011). A dipolar self-induced bosonic Josephson junction. EPL (Europhysics Letters), 94(1), 10004. doi:10.1209/0295-5075/94/10004

Gallemí, A., Guilleumas, M., Mayol, R., & Sanpera, A. (2013). Role of anisotropy in dipolar bosons in triple-well potentials. Physical Review A, 88(6). doi:10.1103/physreva.88.063645

Mazzarella, G., & Penna, V. (2015). Localization–delocalization transition of dipolar bosons in a four-well potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(6), 065001. doi:10.1088/0953-4075/48/6/065001

Sowiński, T., Dutta, O., Hauke, P., Tagliacozzo, L., & Lewenstein, M. (2012). Dipolar Molecules in Optical Lattices. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115301

Volosniev, A. G., Armstrong, J. R., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2013). Bound states of dipolar bosons in one-dimensional systems. New Journal of Physics, 15(4), 043046. doi:10.1088/1367-2630/15/4/043046

Bjerlin, J., Bengtsson, J., Deuretzbacher, F., Kristinsdóttir, L. H., & Reimann, S. M. (2018). Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation. Physical Review A, 97(2). doi:10.1103/physreva.97.023634

Deuretzbacher, F., Bruun, G. M., Pethick, C. J., Jona-Lasinio, M., Reimann, S. M., & Santos, L. (2013). Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions. Physical Review A, 88(3). doi:10.1103/physreva.88.033611

Graß, T. (2015). Quench dynamics of dipolar fermions in a one-dimensional harmonic trap. Physical Review A, 92(2). doi:10.1103/physreva.92.023634

Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083

Pachos, J. K. (2009). Introduction to Topological Quantum Computation. doi:10.1017/cbo9780511792908

Aguado, M., Brennen, G. K., Verstraete, F., & Cirac, J. I. (2008). Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.260501

Keilmann, T., Lanzmich, S., McCulloch, I., & Roncaglia, M. (2011). Statistically induced phase transitions and anyons in 1D optical lattices. Nature Communications, 2(1). doi:10.1038/ncomms1353

Girardeau, M. D. (2006). Anyon-Fermion Mapping and Applications to Ultracold Gases in Tight Waveguides. Physical Review Letters, 97(10). doi:10.1103/physrevlett.97.100402

Hao, Y., Zhang, Y., & Chen, S. (2008). Ground-state properties of one-dimensional anyon gases. Physical Review A, 78(2). doi:10.1103/physreva.78.023631

Del Campo, A. (2008). Fermionization and bosonization of expanding one-dimensional anyonic fluids. Physical Review A, 78(4). doi:10.1103/physreva.78.045602

Zinner, N. T. (2015). Strongly interacting mesoscopic systems of anyons in one dimension. Physical Review A, 92(6). doi:10.1103/physreva.92.063634

Colcelli, A., Mussardo, G., & Trombettoni, A. (2018). Deviations from off-diagonal long-range order in one-dimensional quantum systems. EPL (Europhysics Letters), 122(5), 50006. doi:10.1209/0295-5075/122/50006

Kundu, A. (1999). Exact Solution of DoubleδFunction Bose Gas through an Interacting Anyon Gas. Physical Review Letters, 83(7), 1275-1278. doi:10.1103/physrevlett.83.1275

Del Campo, A., Delgado, F., García-Calderón, G., Muga, J. G., & Raizen, M. G. (2006). Decay by tunneling of bosonic and fermionic Tonks-Girardeau gases. Physical Review A, 74(1). doi:10.1103/physreva.74.013605

Del Campo, A. (2011). Long-time behavior of many-particle quantum decay. Physical Review A, 84(1). doi:10.1103/physreva.84.012113

Lode, A. U. J., Klaiman, S., Alon, O. E., Streltsov, A. I., & Cederbaum, L. S. (2014). Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics. Physical Review A, 89(5). doi:10.1103/physreva.89.053620

Gharashi, S. E., & Blume, D. (2015). Tunneling dynamics of two interacting one-dimensional particles. Physical Review A, 92(3). doi:10.1103/physreva.92.033629

Lundmark, R., Forssén, C., & Rotureau, J. (2015). Tunneling theory for tunable open quantum systems of ultracold atoms in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.041601

Dobrzyniecki, J., & Sowiński, T. (2018). Dynamics of a few interacting bosons escaping from an open well. Physical Review A, 98(1). doi:10.1103/physreva.98.013634

Dobrzyniecki, J., & Sowiński, T. (2019). Momentum correlations of a few ultracold bosons escaping from an open well. Physical Review A, 99(6). doi:10.1103/physreva.99.063608

Pons, M., Sokolovski, D., & del Campo, A. (2012). Fidelity of fermionic-atom number states subjected to tunneling decay. Physical Review A, 85(2). doi:10.1103/physreva.85.022107

Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles. Few-Body Systems, 57(1), 11-43. doi:10.1007/s00601-015-1024-6

Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries. II. N Particles. Few-Body Systems, 57(1), 45-69. doi:10.1007/s00601-015-1025-5

Yurovsky, V. A. (2014). Permutation Symmetry in Spinor Quantum Gases: Selection Rules, Conservation Laws, and Correlations. Physical Review Letters, 113(20). doi:10.1103/physrevlett.113.200406

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem