Mostrar el registro sencillo del ítem
dc.contributor.author | Sowinski, T.![]() |
es_ES |
dc.contributor.author | Garcia March, Miguel Angel![]() |
es_ES |
dc.date.accessioned | 2020-12-05T04:32:50Z | |
dc.date.available | 2020-12-05T04:32:50Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 0034-4885 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156516 | |
dc.description.abstract | [EN] Recent theoretical and experimental progress on studying one-dimensional systems of bosonic, fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad context of mesoscopic quantum physics. We pay special attention to limiting cases of very strong or very weak interactions and transitions between them. For bosonic mixtures, we describe the developments in systems of three and four atoms as well as different extensions to larger numbers of particles. We also briefly review progress in the case of spinor Bose gases of a few atoms. For fennionic mixtures, we discuss a special role of spin and present a detailed discussion of the two- and three-atom cases. We discuss the advantages and disadvantages of different computation methods applied to systems with intermediate interactions. In the case of very strong repulsion, close to the infinite limit, we discuss approaches based on effective spin chain descriptions. We also report on recent studies on higher-spin mixtures and inter-component attractive forces. For both statistics, we pay particular attention to impurity problems and mass imbalance cases. Finally, we describe the recent advances on trapped Bose-Fermi mixtures, which allow for a theoretical combination of previous concepts, well illustrating the importance of quantum statistics and inter-particle interactions. Lastly, we report on fundamental questions related to the subject which we believe will inspire further theoretical developments and experimental verification. | es_ES |
dc.description.sponsorship | T S acknowledge financial support from the (Polish) National Science Centre with Grant No. 2016/22/E/ST2/00555. MAGM acknowledges funding from the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC, and the (Polish) National Science Centre, Symfonia Grant No. 2016/20/W/ST4/00314. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Reports on Progress in Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | One-dimensional systems | es_ES |
dc.subject | Few-body systems | es_ES |
dc.subject | Ultra-cold atoms | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | One-dimensional mixtures of several ultracold atoms: a review | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1361-6633/ab3a80 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2016%2F22%2FE%2FST2%2F00555/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Sowinski, T.; Garcia March, MA. (2019). One-dimensional mixtures of several ultracold atoms: a review. Reports on Progress in Physics. 82(10):1-44. https://doi.org/10.1088/1361-6633/ab3a80 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1361-6633/ab3a80 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 44 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 82 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 31404916 | es_ES |
dc.relation.pasarela | S\409619 | es_ES |
dc.contributor.funder | Fundación Cellex | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | National Science Centre, Polonia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. doi:10.1017/cbo9780511802850 | es_ES |
dc.description.references | Lewenstein, M., Sanpera, A., & Ahufinger, V. (2012). Ultracold Atoms in Optical Lattices. doi:10.1093/acprof:oso/9780199573127.001.0001 | es_ES |
dc.description.references | Blume, D. (2010). Jumping from two and three particles to infinitely many. Physics, 3. doi:10.1103/physics.3.74 | es_ES |
dc.description.references | Blume, D. (2012). Few-body physics with ultracold atomic and molecular systems in traps. Reports on Progress in Physics, 75(4), 046401. doi:10.1088/0034-4885/75/4/046401 | es_ES |
dc.description.references | Kinoshita, T. (2004). Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305(5687), 1125-1128. doi:10.1126/science.1100700 | es_ES |
dc.description.references | Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., … Bloch, I. (2004). Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277-281. doi:10.1038/nature02530 | es_ES |
dc.description.references | Kinoshita, T., Wenger, T., & Weiss, D. S. (2005). Local Pair Correlations in One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190406 | es_ES |
dc.description.references | Cheinet, P., Trotzky, S., Feld, M., Schnorrberger, U., Moreno-Cardoner, M., Fölling, S., & Bloch, I. (2008). Counting Atoms Using Interaction Blockade in an Optical Superlattice. Physical Review Letters, 101(9). doi:10.1103/physrevlett.101.090404 | es_ES |
dc.description.references | Will, S., Best, T., Schneider, U., Hackermüller, L., Lühmann, D.-S., & Bloch, I. (2010). Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465(7295), 197-201. doi:10.1038/nature09036 | es_ES |
dc.description.references | He, X., Xu, P., Wang, J., & Zhan, M. (2010). High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Optics Express, 18(13), 13586. doi:10.1364/oe.18.013586 | es_ES |
dc.description.references | Bourgain, R., Pellegrino, J., Fuhrmanek, A., Sortais, Y. R. P., & Browaeys, A. (2013). Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023428 | es_ES |
dc.description.references | Moritz, H., Stöferle, T., Günter, K., Köhl, M., & Esslinger, T. (2005). Confinement Induced Molecules in a 1D Fermi Gas. Physical Review Letters, 94(21). doi:10.1103/physrevlett.94.210401 | es_ES |
dc.description.references | Liao, Y., Rittner, A. S. C., Paprotta, T., Li, W., Partridge, G. B., Hulet, R. G., … Mueller, E. J. (2010). Spin-imbalance in a one-dimensional Fermi gas. Nature, 467(7315), 567-569. doi:10.1038/nature09393 | es_ES |
dc.description.references | Serwane, F., Zurn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., & Jochim, S. (2011). Deterministic Preparation of a Tunable Few-Fermion System. Science, 332(6027), 336-338. doi:10.1126/science.1201351 | es_ES |
dc.description.references | Wenz, A. N., Zurn, G., Murmann, S., Brouzos, I., Lompe, T., & Jochim, S. (2013). From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 342(6157), 457-460. doi:10.1126/science.1240516 | es_ES |
dc.description.references | Murmann, S., Deuretzbacher, F., Zürn, G., Bjerlin, J., Reimann, S. M., Santos, L., … Jochim, S. (2015). Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters, 115(21). doi:10.1103/physrevlett.115.215301 | es_ES |
dc.description.references | Murmann, S., Bergschneider, A., Klinkhamer, V. M., Zürn, G., Lompe, T., & Jochim, S. (2015). Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model. Physical Review Letters, 114(8). doi:10.1103/physrevlett.114.080402 | es_ES |
dc.description.references | McGuire, J. B. (1964). Study of Exactly Soluble One‐Dimensional N‐Body Problems. Journal of Mathematical Physics, 5(5), 622-636. doi:10.1063/1.1704156 | es_ES |
dc.description.references | Zürn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., & Jochim, S. (2012). Fermionization of Two Distinguishable Fermions. Physical Review Letters, 108(7). doi:10.1103/physrevlett.108.075303 | es_ES |
dc.description.references | Zürn, G., Wenz, A. N., Murmann, S., Bergschneider, A., Lompe, T., & Jochim, S. (2013). Pairing in Few-Fermion Systems with Attractive Interactions. Physical Review Letters, 111(17). doi:10.1103/physrevlett.111.175302 | es_ES |
dc.description.references | Chuu, C.-S., Schreck, F., Meyrath, T. P., Hanssen, J. L., Price, G. N., & Raizen, M. G. (2005). Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas. Physical Review Letters, 95(26). doi:10.1103/physrevlett.95.260403 | es_ES |
dc.description.references | Rontani, M. (2012). Tunneling Theory of Two Interacting Atoms in a Trap. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115302 | es_ES |
dc.description.references | Lode, A. U. J., Streltsov, A. I., Sakmann, K., Alon, O. E., & Cederbaum, L. S. (2012). How an interacting many-body system tunnels through a potential barrier to open space. Proceedings of the National Academy of Sciences, 109(34), 13521-13525. doi:10.1073/pnas.1201345109 | es_ES |
dc.description.references | Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885-964. doi:10.1103/revmodphys.80.885 | es_ES |
dc.description.references | Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225-1286. doi:10.1103/revmodphys.82.1225 | es_ES |
dc.description.references | Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., & Rigol, M. (2011). One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 83(4), 1405-1466. doi:10.1103/revmodphys.83.1405 | es_ES |
dc.description.references | Guan, X.-W., Batchelor, M. T., & Lee, C. (2013). Fermi gases in one dimension: From Bethe ansatz to experiments. Reviews of Modern Physics, 85(4), 1633-1691. doi:10.1103/revmodphys.85.1633 | es_ES |
dc.description.references | Zinner, N. T. (2016). Exploring the few- to many-body crossover using cold atoms in one dimension. EPJ Web of Conferences, 113, 01002. doi:10.1051/epjconf/201611301002 | es_ES |
dc.description.references | Braaten, E., & Hammer, H.-W. (2006). Universality in few-body systems with large scattering length. Physics Reports, 428(5-6), 259-390. doi:10.1016/j.physrep.2006.03.001 | es_ES |
dc.description.references | Naidon, P., & Endo, S. (2017). Efimov physics: a review. Reports on Progress in Physics, 80(5), 056001. doi:10.1088/1361-6633/aa50e8 | es_ES |
dc.description.references | Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863 | es_ES |
dc.description.references | Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215 | es_ES |
dc.description.references | Busch, T., Englert, B.-G., Rzażewski, K., & Wilkens, M. (1998). Foundations of Physics, 28(4), 549-559. doi:10.1023/a:1018705520999 | es_ES |
dc.description.references | WEI, B.-B. (2009). TWO ONE-DIMENSIONAL INTERACTING PARTICLES IN A HARMONIC TRAP. International Journal of Modern Physics B, 23(18), 3709-3715. doi:10.1142/s0217979209053345 | es_ES |
dc.description.references | Olshanii, M. (1998). Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Physical Review Letters, 81(5), 938-941. doi:10.1103/physrevlett.81.938 | es_ES |
dc.description.references | Idziaszek, Z., & Calarco, T. (2006). Analytical solutions for the dynamics of two trapped interacting ultracold atoms. Physical Review A, 74(2). doi:10.1103/physreva.74.022712 | es_ES |
dc.description.references | Sowiński, T., Brewczyk, M., Gajda, M., & Rzążewski, K. (2010). Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap. Physical Review A, 82(5). doi:10.1103/physreva.82.053631 | es_ES |
dc.description.references | Ebert, M., Volosniev, A., & Hammer, H.-W. (2016). Two cold atoms in a time-dependent harmonic trap in one dimension. Annalen der Physik, 528(9-10), 693-704. doi:10.1002/andp.201500365 | es_ES |
dc.description.references | Budewig, L., Mistakidis, S. I., & Schmelcher, P. (2019). Quench dynamics of two one-dimensional harmonically trapped bosons bridging attraction and repulsion. Molecular Physics, 117(15-16), 2043-2057. doi:10.1080/00268976.2019.1575995 | es_ES |
dc.description.references | Sala, S., Zürn, G., Lompe, T., Wenz, A. N., Murmann, S., Serwane, F., … Saenz, A. (2013). Coherent Molecule Formation in Anharmonic Potentials Near Confinement-Induced Resonances. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203202 | es_ES |
dc.description.references | Moshinsky, M. (1968). How Good is the Hartree-Fock Approximation. American Journal of Physics, 36(1), 52-53. doi:10.1119/1.1974410 | es_ES |
dc.description.references | Bialynicki-Birula, I. (1985). Exact solutions of nonrelativistic classical and quantum field theory with harmonic forces. Letters in Mathematical Physics, 10(2-3), 189-194. doi:10.1007/bf00398157 | es_ES |
dc.description.references | Załuska-Kotur, M. A., Gajda, M., Orłowski, A., & Mostowski, J. (2000). Soluble model of many interacting quantum particles in a trap. Physical Review A, 61(3). doi:10.1103/physreva.61.033613 | es_ES |
dc.description.references | Ko, Y., & Kim, K. S. (2012). Lifetime of a Nuclear Excited State in Cascade Decay. Few-Body Systems, 54(1-4), 437-440. doi:10.1007/s00601-012-0408-0 | es_ES |
dc.description.references | Klaiman, S., Streltsov, A. I., & Alon, O. E. (2017). Solvable model of a trapped mixture of Bose–Einstein condensates. Chemical Physics, 482, 362-373. doi:10.1016/j.chemphys.2016.07.011 | es_ES |
dc.description.references | Idziaszek, Z., & Calarco, T. (2005). Two atoms in an anisotropic harmonic trap. Physical Review A, 71(5). doi:10.1103/physreva.71.050701 | es_ES |
dc.description.references | Scoquart, T., Seaward, J., Jackson, S. G., & Olshanii, M. (2016). Exactly solvable quantum few-body systems associated with the symmetries of the three-dimensional and four-dimensional icosahedra. SciPost Physics, 1(1). doi:10.21468/scipostphys.1.1.005 | es_ES |
dc.description.references | Olshanii, M., Scoquart, T., Yampolsky, D., Dunjko, V., & Jackson, S. G. (2018). Creating entanglement using integrals of motion. Physical Review A, 97(1). doi:10.1103/physreva.97.013630 | es_ES |
dc.description.references | Gao, B. (1998). Solutions of the Schrödinger equation for an attractive1/r6potential. Physical Review A, 58(3), 1728-1734. doi:10.1103/physreva.58.1728 | es_ES |
dc.description.references | Gao, B. (1999). Repulsive1/r3interaction. Physical Review A, 59(4), 2778-2786. doi:10.1103/physreva.59.2778 | es_ES |
dc.description.references | Kościk, P., & Sowiński, T. (2018). Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions. Scientific Reports, 8(1). doi:10.1038/s41598-017-18505-5 | es_ES |
dc.description.references | Kościk, P., & Sowiński, T. (2019). Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap. Scientific Reports, 9(1). doi:10.1038/s41598-019-48442-4 | es_ES |
dc.description.references | Lieb, E. H., & Liniger, W. (1963). Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Physical Review, 130(4), 1605-1616. doi:10.1103/physrev.130.1605 | es_ES |
dc.description.references | Lieb, E. H. (1963). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Physical Review, 130(4), 1616-1624. doi:10.1103/physrev.130.1616 | es_ES |
dc.description.references | Calogero, F. (1971). Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 12(3), 419-436. doi:10.1063/1.1665604 | es_ES |
dc.description.references | Sutherland, B. (1971). Quantum Many‐Body Problem in One Dimension: Ground State. Journal of Mathematical Physics, 12(2), 246-250. doi:10.1063/1.1665584 | es_ES |
dc.description.references | Pittman, S. M., Beau, M., Olshanii, M., & del Campo, A. (2017). Truncated Calogero-Sutherland models. Physical Review B, 95(20). doi:10.1103/physrevb.95.205135 | es_ES |
dc.description.references | Marchukov, O. V., & Fischer, U. R. (2019). Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap. Annals of Physics, 405, 274-288. doi:10.1016/j.aop.2019.03.023 | es_ES |
dc.description.references | Astrakharchik, G. E., Blume, D., Giorgini, S., & Granger, B. E. (2004). Quasi-One-Dimensional Bose Gases with a Large Scattering Length. Physical Review Letters, 92(3). doi:10.1103/physrevlett.92.030402 | es_ES |
dc.description.references | Astrakharchik, G. E., Boronat, J., Casulleras, J., & Giorgini, S. (2005). Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190407 | es_ES |
dc.description.references | Batchelor, M. T., Bortz, M., Guan, X. W., & Oelkers, N. (2005). Evidence for the super Tonks–Girardeau gas. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), L10001-L10001. doi:10.1088/1742-5468/2005/10/l10001 | es_ES |
dc.description.references | Haller, E., Gustavsson, M., Mark, M. J., Danzl, J. G., Hart, R., Pupillo, G., & Nagerl, H.-C. (2009). Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science, 325(5945), 1224-1227. doi:10.1126/science.1175850 | es_ES |
dc.description.references | Cazalilla, M. A., & Ho, A. F. (2003). Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases. Physical Review Letters, 91(15). doi:10.1103/physrevlett.91.150403 | es_ES |
dc.description.references | Tempfli, E., Zöllner, S., & Schmelcher, P. (2009). Binding between two-component bosons in one dimension. New Journal of Physics, 11(7), 073015. doi:10.1088/1367-2630/11/7/073015 | es_ES |
dc.description.references | Petrov, D. S. (2015). Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Physical Review Letters, 115(15). doi:10.1103/physrevlett.115.155302 | es_ES |
dc.description.references | Zin, P., Pylak, M., Wasak, T., Gajda, M., & Idziaszek, Z. (2018). Quantum Bose-Bose droplets at a dimensional crossover. Physical Review A, 98(5). doi:10.1103/physreva.98.051603 | es_ES |
dc.description.references | Chiquillo, E. (2018). Equation of state of the one- and three-dimensional Bose-Bose gases. Physical Review A, 97(6). doi:10.1103/physreva.97.063605 | es_ES |
dc.description.references | Cabrera, C. R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., & Tarruell, L. (2017). Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373), 301-304. doi:10.1126/science.aao5686 | es_ES |
dc.description.references | Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., … Fattori, M. (2018). Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Physical Review Letters, 120(23). doi:10.1103/physrevlett.120.235301 | es_ES |
dc.description.references | Cheiney, P., Cabrera, C. R., Sanz, J., Naylor, B., Tanzi, L., & Tarruell, L. (2018). Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.135301 | es_ES |
dc.description.references | Nishida, Y. (2018). Universal bound states of one-dimensional bosons with two- and three-body attractions. Physical Review A, 97(6). doi:10.1103/physreva.97.061603 | es_ES |
dc.description.references | Pricoupenko, A., & Petrov, D. S. (2018). Dimer-dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture. Physical Review A, 97(6). doi:10.1103/physreva.97.063616 | es_ES |
dc.description.references | Cikojević, V., Markić, L. V., Astrakharchik, G. E., & Boronat, J. (2019). Universality in ultradilute liquid Bose-Bose mixtures. Physical Review A, 99(2). doi:10.1103/physreva.99.023618 | es_ES |
dc.description.references | Parisi, L., Astrakharchik, G. E., & Giorgini, S. (2019). Liquid State of One-Dimensional Bose Mixtures: A Quantum Monte Carlo Study. Physical Review Letters, 122(10). doi:10.1103/physrevlett.122.105302 | es_ES |
dc.description.references | Guijarro, G., Pricoupenko, A., Astrakharchik, G. E., Boronat, J., & Petrov, D. S. (2018). One-dimensional three-boson problem with two- and three-body interactions. Physical Review A, 97(6). doi:10.1103/physreva.97.061605 | es_ES |
dc.description.references | Tiesinga, E., & Johnson, P. R. (2011). Collapse and revival dynamics of number-squeezed superfluids of ultracold atoms in optical lattices. Physical Review A, 83(6). doi:10.1103/physreva.83.063609 | es_ES |
dc.description.references | Silva-Valencia, J., & Souza, A. M. C. (2011). First Mott lobe of bosons with local two- and three-body interactions. Physical Review A, 84(6). doi:10.1103/physreva.84.065601 | es_ES |
dc.description.references | Sowiński, T. (2012). Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions. Physical Review A, 85(6). doi:10.1103/physreva.85.065601 | es_ES |
dc.description.references | Hincapie-F, A. F., Franco, R., & Silva-Valencia, J. (2016). Mott lobes of theS=1Bose-Hubbard model with three-body interactions. Physical Review A, 94(3). doi:10.1103/physreva.94.033623 | es_ES |
dc.description.references | Dobrzyniecki, J., Li, X., Nielsen, A. E. B., & Sowiński, T. (2018). Effective three-body interactions for bosons in a double-well confinement. Physical Review A, 97(1). doi:10.1103/physreva.97.013609 | es_ES |
dc.description.references | Barranco, M., Guardiola, R., Hernández, S., Mayol, R., Navarro, J., & Pi, M. (2006). Helium Nanodroplets: An Overview. Journal of Low Temperature Physics, 142(1-2), 1-81. doi:10.1007/s10909-005-9267-0 | es_ES |
dc.description.references | Ho, T.-L., & Shenoy, V. B. (1996). Binary Mixtures of Bose Condensates of Alkali Atoms. Physical Review Letters, 77(16), 3276-3279. doi:10.1103/physrevlett.77.3276 | es_ES |
dc.description.references | Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., & Wieman, C. E. (1997). Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Physical Review Letters, 78(4), 586-589. doi:10.1103/physrevlett.78.586 | es_ES |
dc.description.references | Esry, B. D., Greene, C. H., Burke, Jr., J. P., & Bohn, J. L. (1997). Hartree-Fock Theory for Double Condensates. Physical Review Letters, 78(19), 3594-3597. doi:10.1103/physrevlett.78.3594 | es_ES |
dc.description.references | Busch, T., Cirac, J. I., Pérez-García, V. M., & Zoller, P. (1997). Stability and collective excitations of a two-component Bose-Einstein condensed gas: A moment approach. Physical Review A, 56(4), 2978-2983. doi:10.1103/physreva.56.2978 | es_ES |
dc.description.references | Ao, P., & Chui, S. T. (1998). Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases. Physical Review A, 58(6), 4836-4840. doi:10.1103/physreva.58.4836 | es_ES |
dc.description.references | Pu, H., & Bigelow, N. P. (1998). Properties of Two-Species Bose Condensates. Physical Review Letters, 80(6), 1130-1133. doi:10.1103/physrevlett.80.1130 | es_ES |
dc.description.references | Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., & Cornell, E. A. (1998). Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Physical Review Letters, 81(8), 1539-1542. doi:10.1103/physrevlett.81.1539 | es_ES |
dc.description.references | Gordon, D., & Savage, C. M. (1998). Excitation spectrum and instability of a two-species Bose-Einstein condensate. Physical Review A, 58(2), 1440-1444. doi:10.1103/physreva.58.1440 | es_ES |
dc.description.references | Goldstein, E. V., & Meystre, P. (1997). Quasiparticle instabilities in multicomponent atomic condensates. Physical Review A, 55(4), 2935-2940. doi:10.1103/physreva.55.2935 | es_ES |
dc.description.references | Öhberg, P., & Stenholm, S. (1998). Hartree-Fock treatment of the two-component Bose-Einstein condensate. Physical Review A, 57(2), 1272-1279. doi:10.1103/physreva.57.1272 | es_ES |
dc.description.references | Roy, A., Gautam, S., & Angom, D. (2014). Goldstone modes and bifurcations in phase-separated binary condensates at finite temperature. Physical Review A, 89(1). doi:10.1103/physreva.89.013617 | es_ES |
dc.description.references | Roy, A., & Angom, D. (2015). Thermal suppression of phase separation in condensate mixtures. Physical Review A, 92(1). doi:10.1103/physreva.92.011601 | es_ES |
dc.description.references | Cikojević, V., Markić, L. V., & Boronat, J. (2018). Harmonically trapped Bose–Bose mixtures: a quantum Monte Carlo study. New Journal of Physics, 20(8), 085002. doi:10.1088/1367-2630/aad6cc | es_ES |
dc.description.references | Girardeau, M. (1960). Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1(6), 516-523. doi:10.1063/1.1703687 | es_ES |
dc.description.references | Tonks, L. (1936). The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres. Physical Review, 50(10), 955-963. doi:10.1103/physrev.50.955 | es_ES |
dc.description.references | Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction. Physical Review Letters, 19(23), 1312-1315. doi:10.1103/physrevlett.19.1312 | es_ES |
dc.description.references | Bethe, H. (1931). Zur Theorie der Metalle. Zeitschrift f�r Physik, 71(3-4), 205-226. doi:10.1007/bf01341708 | es_ES |
dc.description.references | Gaudin, M., & Caux, J.-S. (2009). The Bethe Wavefunction. doi:10.1017/cbo9781107053885 | es_ES |
dc.description.references | Petrov, D. S., Shlyapnikov, G. V., & Walraven, J. T. M. (2000). Regimes of Quantum Degeneracy in Trapped 1D Gases. Physical Review Letters, 85(18), 3745-3749. doi:10.1103/physrevlett.85.3745 | es_ES |
dc.description.references | Dunjko, V., Lorent, V., & Olshanii, M. (2001). Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between. Physical Review Letters, 86(24), 5413-5416. doi:10.1103/physrevlett.86.5413 | es_ES |
dc.description.references | Girardeau, M. D., & Wright, E. M. (2001). Bose-Fermi Variational Theory of the Bose-Einstein Condensate Crossover to the Tonks Gas. Physical Review Letters, 87(21). doi:10.1103/physrevlett.87.210401 | es_ES |
dc.description.references | Blume, D. (2002). Fermionization of a bosonic gas under highly elongated confinement: A diffusion quantum Monte Carlo study. Physical Review A, 66(5). doi:10.1103/physreva.66.053613 | es_ES |
dc.description.references | Gangardt, D. M., & Shlyapnikov, G. V. (2003). Stability and Phase Coherence of Trapped 1D Bose Gases. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.010401 | es_ES |
dc.description.references | Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D., & Shlyapnikov, G. V. (2003). Pair Correlations in a Finite-Temperature 1D Bose Gas. Physical Review Letters, 91(4). doi:10.1103/physrevlett.91.040403 | es_ES |
dc.description.references | Brand, J. (2004). A density-functional approach to fermionization in the 1D Bose gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7), S287-S300. doi:10.1088/0953-4075/37/7/073 | es_ES |
dc.description.references | Busch, T., & Huyet, G. (2003). Low-density, one-dimensional quantum gases in a split trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(12), 2553-2562. doi:10.1088/0953-4075/36/12/313 | es_ES |
dc.description.references | Murphy, D. S., & McCann, J. F. (2008). Low-energy excitations of a boson pair in a double-well trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063413 | es_ES |
dc.description.references | Goold, J., & Busch, T. (2008). Ground-state properties of a Tonks-Girardeau gas in a split trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063601 | es_ES |
dc.description.references | Yin, X., Hao, Y., Chen, S., & Zhang, Y. (2008). Ground-state properties of a few-boson system in a one-dimensional hard-wall split potential. Physical Review A, 78(1). doi:10.1103/physreva.78.013604 | es_ES |
dc.description.references | Goold, J., Krych, M., Idziaszek, Z., Fogarty, T., & Busch, T. (2010). An eccentrically perturbed Tonks–Girardeau gas. New Journal of Physics, 12(9), 093041. doi:10.1088/1367-2630/12/9/093041 | es_ES |
dc.description.references | Alon, O. E., & Cederbaum, L. S. (2005). Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Physical Review Letters, 95(14). doi:10.1103/physrevlett.95.140402 | es_ES |
dc.description.references | Chen, S., Cao, J., & Gu, S.-J. (2009). Two-component interacting Tonks-Girardeau gas in a one-dimensional optical lattice. EPL (Europhysics Letters), 85(6), 60004. doi:10.1209/0295-5075/85/60004 | es_ES |
dc.description.references | Batchelor, M. T., Guan, X. W., Oelkers, N., & Lee, C. (2005). The 1D interacting Bose gas in a hard wall box. Journal of Physics A: Mathematical and General, 38(36), 7787-7806. doi:10.1088/0305-4470/38/36/001 | es_ES |
dc.description.references | Hao, Y., Zhang, Y., Liang, J. Q., & Chen, S. (2006). Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap. Physical Review A, 73(6). doi:10.1103/physreva.73.063617 | es_ES |
dc.description.references | Hao, Y., Zhang, Y., Guan, X.-W., & Chen, S. (2009). Ground-state properties of interacting two-component Bose gases in a hard-wall trap. Physical Review A, 79(3). doi:10.1103/physreva.79.033607 | es_ES |
dc.description.references | Olshanii, M., & Jackson, S. G. (2015). An exactly solvable quantum four-body problem associated with the symmetries of an octacube. New Journal of Physics, 17(10), 105005. doi:10.1088/1367-2630/17/10/105005 | es_ES |
dc.description.references | Sakmann, K., Streltsov, A. I., Alon, O. E., & Cederbaum, L. S. (2005). Exact ground state of finite Bose-Einstein condensates on a ring. Physical Review A, 72(3). doi:10.1103/physreva.72.033613 | es_ES |
dc.description.references | Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Ultracold few-boson systems in a double-well trap. Physical Review A, 74(5). doi:10.1103/physreva.74.053612 | es_ES |
dc.description.references | Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Excitations of few-boson systems in one-dimensional harmonic and double wells. Physical Review A, 75(4). doi:10.1103/physreva.75.043608 | es_ES |
dc.description.references | Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Few-Boson Dynamics in Double Wells: From Single-Atom to Correlated Pair Tunneling. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.040401 | es_ES |
dc.description.references | Chatterjee, B., Brouzos, I., Cao, L., & Schmelcher, P. (2012). Few-boson tunneling dynamics of strongly correlated binary mixtures in a double well. Physical Review A, 85(1). doi:10.1103/physreva.85.013611 | es_ES |
dc.description.references | Dobrzyniecki, J., & Sowiński, T. (2016). Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential. The European Physical Journal D, 70(4). doi:10.1140/epjd/e2016-70016-x | es_ES |
dc.description.references | Dobrzyniecki, J., & Sowiński, T. (2018). Effective two-mode description of a few ultra-cold bosons in a double-well potential. Physics Letters A, 382(6), 394-399. doi:10.1016/j.physleta.2017.12.027 | es_ES |
dc.description.references | Okopińska, A., & Kościk, P. (2009). Two-Boson Correlations in Various One-Dimensional Traps. Few-Body Systems, 45(2-4), 223-226. doi:10.1007/s00601-009-0031-x | es_ES |
dc.description.references | García-March, M. A., Yuste, A., Juliá-Díaz, B., & Polls, A. (2015). Mesoscopic superpositions of Tonks-Girardeau states and the Bose-Fermi mapping. Physical Review A, 92(3). doi:10.1103/physreva.92.033621 | es_ES |
dc.description.references | Harshman, N. L. (2017). Identical Wells, Symmetry Breaking, and the Near-Unitary Limit. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1214-5 | es_ES |
dc.description.references | Harshman, N. L. (2017). Infinite barriers and symmetries for a few trapped particles in one dimension. Physical Review A, 95(5). doi:10.1103/physreva.95.053616 | es_ES |
dc.description.references | Matthies, C., Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Quantum dynamics of two bosons in an anharmonic trap: Collective versus internal excitations. Physical Review A, 76(2). doi:10.1103/physreva.76.023602 | es_ES |
dc.description.references | Girardeau, M. D., Wright, E. M., & Triscari, J. M. (2001). Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap. Physical Review A, 63(3). doi:10.1103/physreva.63.033601 | es_ES |
dc.description.references | Lenard, A. (1964). Momentum Distribution in the Ground State of the One‐Dimensional System of Impenetrable Bosons. Journal of Mathematical Physics, 5(7), 930-943. doi:10.1063/1.1704196 | es_ES |
dc.description.references | Lenard, A. (1966). One‐Dimensional Impenetrable Bosons in Thermal Equilibrium. Journal of Mathematical Physics, 7(7), 1268-1272. doi:10.1063/1.1705029 | es_ES |
dc.description.references | Vaidya, H. G., & Tracy, C. A. (1979). One-Particle Reduced Density Matrix of Impenetrable Bosons in One Dimension at Zero Temperature. Physical Review Letters, 42(1), 3-6. doi:10.1103/physrevlett.42.3 | es_ES |
dc.description.references | Forrester, P. J., Frankel, N. E., Garoni, T. M., & Witte, N. S. (2003). Finite one-dimensional impenetrable Bose systems: Occupation numbers. Physical Review A, 67(4). doi:10.1103/physreva.67.043607 | es_ES |
dc.description.references | Brun, Y., & Dubail, J. (2017). One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance. SciPost Physics, 2(2). doi:10.21468/scipostphys.2.2.012 | es_ES |
dc.description.references | Deuretzbacher, F., Bongs, K., Sengstock, K., & Pfannkuche, D. (2007). Evolution from a Bose-Einstein condensate to a Tonks-Girardeau gas: An exact diagonalization study. Physical Review A, 75(1). doi:10.1103/physreva.75.013614 | es_ES |
dc.description.references | Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Correlations in ultracold trapped few-boson systems: Transition from condensation to fermionization. Physical Review A, 74(6). doi:10.1103/physreva.74.063611 | es_ES |
dc.description.references | Ernst, T., Hallwood, D. W., Gulliksen, J., Meyer, H.-D., & Brand, J. (2011). Simulating strongly correlated multiparticle systems in a truncated Hilbert space. Physical Review A, 84(2). doi:10.1103/physreva.84.023623 | es_ES |
dc.description.references | Brouzos, I., & Schmelcher, P. (2012). Construction of Analytical Many-Body Wave Functions for Correlated Bosons in a Harmonic Trap. Physical Review Letters, 108(4). doi:10.1103/physrevlett.108.045301 | es_ES |
dc.description.references | Wilson, B., Foerster, A., Kuhn, C. C. N., Roditi, I., & Rubeni, D. (2014). A geometric wave function for a few interacting bosons in a harmonic trap. Physics Letters A, 378(16-17), 1065-1070. doi:10.1016/j.physleta.2014.02.009 | es_ES |
dc.description.references | Kościk, P. (2011). Quantum Correlations of a Few Bosons within a Harmonic Trap. Few-Body Systems, 52(1-2), 49-52. doi:10.1007/s00601-011-0239-4 | es_ES |
dc.description.references | Christensson, J., Forssén, C., Åberg, S., & Reimann, S. M. (2009). Effective-interaction approach to the many-boson problem. Physical Review A, 79(1). doi:10.1103/physreva.79.012707 | es_ES |
dc.description.references | Kościk, P. (2018). Optimized configuration interaction approach for trapped multiparticle systems interacting via contact forces. Physics Letters A, 382(36), 2561-2564. doi:10.1016/j.physleta.2018.06.025 | es_ES |
dc.description.references | Jeszenszki, P., Luo, H., Alavi, A., & Brand, J. (2018). Accelerating the convergence of exact diagonalization with the transcorrelated method: Quantum gas in one dimension with contact interactions. Physical Review A, 98(5). doi:10.1103/physreva.98.053627 | es_ES |
dc.description.references | Friedel, J. (1952). XIV. The distribution of electrons round impurities in monovalent metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(337), 153-189. doi:10.1080/14786440208561086 | es_ES |
dc.description.references | Friedel, J. (1958). Metallic alloys. Il Nuovo Cimento, 7(S2), 287-311. doi:10.1007/bf02751483 | es_ES |
dc.description.references | Minguzzi, A., Vignolo, P., & Tosi, M. P. (2002). High-momentum tail in the Tonks gas under harmonic confinement. Physics Letters A, 294(3-4), 222-226. doi:10.1016/s0375-9601(02)00042-7 | es_ES |
dc.description.references | Lapeyre, G. J., Girardeau, M. D., & Wright, E. M. (2002). Momentum distribution for a one-dimensional trapped gas of hard-core bosons. Physical Review A, 66(2). doi:10.1103/physreva.66.023606 | es_ES |
dc.description.references | Gudyma, A. I., Astrakharchik, G. E., & Zvonarev, M. B. (2015). Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas. Physical Review A, 92(2). doi:10.1103/physreva.92.021601 | es_ES |
dc.description.references | Garcia-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Busch, T., Boronat, J., & Polls, A. (2013). Sharp crossover from composite fermionization to phase separation in microscopic mixtures of ultracold bosons. Physical Review A, 88(6). doi:10.1103/physreva.88.063604 | es_ES |
dc.description.references | Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Composite fermionization of one-dimensional Bose-Bose mixtures. Physical Review A, 78(1). doi:10.1103/physreva.78.013629 | es_ES |
dc.description.references | Hao, Y. J., & Chen, S. (2008). Ground-state properties of interacting two-component Bose gases in a one-dimensional harmonic trap. The European Physical Journal D, 51(2), 261-266. doi:10.1140/epjd/e2008-00266-0 | es_ES |
dc.description.references | Pyzh, M., Krönke, S., Weitenberg, C., & Schmelcher, P. (2018). Spectral properties and breathing dynamics of a few-body Bose–Bose mixture in a 1D harmonic trap. New Journal of Physics, 20(1), 015006. doi:10.1088/1367-2630/aa9cb2 | es_ES |
dc.description.references | Li, Y.-Q., Gu, S.-J., Ying, Z.-J., & Eckern, U. (2003). Exact results of the ground state and excitation properties of a two-component interacting Bose system. Europhysics Letters (EPL), 61(3), 368-374. doi:10.1209/epl/i2003-00183-2 | es_ES |
dc.description.references | Girardeau, M. D., & Minguzzi, A. (2007). Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides. Physical Review Letters, 99(23). doi:10.1103/physrevlett.99.230402 | es_ES |
dc.description.references | Deuretzbacher, F., Fredenhagen, K., Becker, D., Bongs, K., Sengstock, K., & Pfannkuche, D. (2008). Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases. Physical Review Letters, 100(16). doi:10.1103/physrevlett.100.160405 | es_ES |
dc.description.references | Fang, B., Vignolo, P., Gattobigio, M., Miniatura, C., & Minguzzi, A. (2011). Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture. Physical Review A, 84(2). doi:10.1103/physreva.84.023626 | es_ES |
dc.description.references | GaudinN, M., & Derrida, B. (1975). Solution exacte d’un problème modèle à trois corps. Etat lié. Journal de Physique, 36(12), 1183-1197. doi:10.1051/jphys:0197500360120118300 | es_ES |
dc.description.references | Zinner, N. T., Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Valiente, M. (2014). Fractional energy states of strongly interacting bosons in one dimension. EPL (Europhysics Letters), 107(6), 60003. doi:10.1209/0295-5075/107/60003 | es_ES |
dc.description.references | García-March, M.-Á., Ferrando, A., Zacarés, M., Vijande, J., & Carr, L. D. (2009). Angular pseudomomentum theory for the generalized nonlinear Schrödinger equation in discrete rotational symmetry media. Physica D: Nonlinear Phenomena, 238(15), 1432-1438. doi:10.1016/j.physd.2008.12.007 | es_ES |
dc.description.references | García-March, M.-Á., Ferrando, A., Zacarés, M., Sahu, S., & Ceballos-Herrera, D. E. (2009). Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media. Physical Review A, 79(5). doi:10.1103/physreva.79.053820 | es_ES |
dc.description.references | García-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Boronat, J., & Polls, A. (2014). Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Physical Review A, 90(6). doi:10.1103/physreva.90.063605 | es_ES |
dc.description.references | Dehkharghani, A., Volosniev, A., Lindgren, J., Rotureau, J., Forssén, C., Fedorov, D., … Zinner, N. (2015). Quantum magnetism in strongly interacting one-dimensional spinor Bose systems. Scientific Reports, 5(1). doi:10.1038/srep10675 | es_ES |
dc.description.references | Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2016). Impenetrable mass-imbalanced particles in one-dimensional harmonic traps. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(8), 085301. doi:10.1088/0953-4075/49/8/085301 | es_ES |
dc.description.references | Hao, Y., & Chen, S. (2009). Density-functional theory of two-component Bose gases in one-dimensional harmonic traps. Physical Review A, 80(4). doi:10.1103/physreva.80.043608 | es_ES |
dc.description.references | Garcia-March, M. A., & Busch, T. (2013). Quantum gas mixtures in different correlation regimes. Physical Review A, 87(6). doi:10.1103/physreva.87.063633 | es_ES |
dc.description.references | Kolomeisky, E. B., Newman, T. J., Straley, J. P., & Qi, X. (2000). Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation. Physical Review Letters, 85(6), 1146-1149. doi:10.1103/physrevlett.85.1146 | es_ES |
dc.description.references | Tanatar, B., & Erkan, K. (2000). Strongly interacting one-dimensional Bose-Einstein condensates in harmonic traps. Physical Review A, 62(5). doi:10.1103/physreva.62.053601 | es_ES |
dc.description.references | Girardeau, M. D., & Wright, E. M. (2000). Breakdown of Time-Dependent Mean-Field Theory for a One-Dimensional Condensate of Impenetrable Bosons. Physical Review Letters, 84(23), 5239-5242. doi:10.1103/physrevlett.84.5239 | es_ES |
dc.description.references | Barfknecht, R. E., Dehkharghani, A. S., Foerster, A., & Zinner, N. T. (2016). Correlation properties of a three-body bosonic mixture in a harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(13), 135301. doi:10.1088/0953-4075/49/13/135301 | es_ES |
dc.description.references | Volosniev, A. G. (2017). Strongly Interacting One-dimensional Systems with Small Mass Imbalance. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1227-0 | es_ES |
dc.description.references | Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2015). Quantum impurity in a one-dimensional trapped Bose gas. Physical Review A, 92(3). doi:10.1103/physreva.92.031601 | es_ES |
dc.description.references | Mehta, N. P. (2014). Born-Oppenheimer study of two-component few-particle systems under one-dimensional confinement. Physical Review A, 89(5). doi:10.1103/physreva.89.052706 | es_ES |
dc.description.references | Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623 | es_ES |
dc.description.references | Will, S., Best, T., Braun, S., Schneider, U., & Bloch, I. (2011). Coherent Interaction of a Single Fermion with a Small Bosonic Field. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115305 | es_ES |
dc.description.references | Grusdt, F., Astrakharchik, G. E., & Demler, E. (2017). Bose polarons in ultracold atoms in one dimension: beyond the Fröhlich paradigm. New Journal of Physics, 19(10), 103035. doi:10.1088/1367-2630/aa8a2e | es_ES |
dc.description.references | Barfknecht, R. E., Foerster, A., & Zinner, N. T. (2018). Emergence of junction dynamics in a strongly interacting Bose mixture. New Journal of Physics, 20(6), 063014. doi:10.1088/1367-2630/aac718 | es_ES |
dc.description.references | Mehta, N. P., & Morehead, C. D. (2015). Few-boson processes in the presence of an attractive impurity under one-dimensional confinement. Physical Review A, 92(4). doi:10.1103/physreva.92.043616 | es_ES |
dc.description.references | Harshman, N. L., Olshanii, M., Dehkharghani, A. S., Volosniev, A. G., Jackson, S. G., & Zinner, N. T. (2017). Integrable Families of Hard-Core Particles with Unequal Masses in a One-Dimensional Harmonic Trap. Physical Review X, 7(4). doi:10.1103/physrevx.7.041001 | es_ES |
dc.description.references | Granger, B. E., & Blume, D. (2004). Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement. Physical Review Letters, 92(13). doi:10.1103/physrevlett.92.133202 | es_ES |
dc.description.references | Girardeau, M. D., & Olshanii, M. (2004). Theory of spinor Fermi and Bose gases in tight atom waveguides. Physical Review A, 70(2). doi:10.1103/physreva.70.023608 | es_ES |
dc.description.references | Yang, L., & Pu, H. (2016). Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations. Physical Review A, 94(3). doi:10.1103/physreva.94.033614 | es_ES |
dc.description.references | Yang, L., & Pu, H. (2017). One-body density matrix and momentum distribution of strongly interacting one-dimensional spinor quantum gases. Physical Review A, 95(5). doi:10.1103/physreva.95.051602 | es_ES |
dc.description.references | Wang, H., & Zhang, Y. (2013). Density-functional theory for the spin-1 bosons in a one-dimensional harmonic trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023626 | es_ES |
dc.description.references | Hao, Y. (2016). The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction. The European Physical Journal D, 70(5). doi:10.1140/epjd/e2016-70076-x | es_ES |
dc.description.references | Hao, Y. (2017). Ground state properties of anti-ferromagnetic spinor Bose gases in one dimension. The European Physical Journal D, 71(3). doi:10.1140/epjd/e2017-70483-5 | es_ES |
dc.description.references | Jen, H. H., & Yip, S.-K. (2017). Spin-incoherent Luttinger liquid of one-dimensional spin-1 Tonks-Girardeau Bose gases: Spin-dependent properties. Physical Review A, 95(5). doi:10.1103/physreva.95.053631 | es_ES |
dc.description.references | Gharashi, S. E., Daily, K. M., & Blume, D. (2012). Threes-wave-interacting fermions under anisotropic harmonic confinement: Dimensional crossover of energetics and virial coefficients. Physical Review A, 86(4). doi:10.1103/physreva.86.042702 | es_ES |
dc.description.references | Wille, E., Spiegelhalder, F. M., Kerner, G., Naik, D., Trenkwalder, A., Hendl, G., … Julienne, P. S. (2008). Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties ofLi6andK40. Physical Review Letters, 100(5). doi:10.1103/physrevlett.100.053201 | es_ES |
dc.description.references | Tiecke, T. G., Goosen, M. R., Ludewig, A., Gensemer, S. D., Kraft, S., Kokkelmans, S. J. J. M. F., & Walraven, J. T. M. (2010). Broad Feshbach Resonance in theLi6−K40Mixture. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.053202 | es_ES |
dc.description.references | Guan, X.-W., Batchelor, M. T., & Lee, J.-Y. (2008). Magnetic ordering and quantum statistical effects in strongly repulsive Fermi-Fermi and Bose-Fermi mixtures. Physical Review A, 78(2). doi:10.1103/physreva.78.023621 | es_ES |
dc.description.references | Sowiński, T. (2018). Ground-State Magnetization in Mixtures of a Few Ultra-Cold Fermions in One-Dimensional Traps. Condensed Matter, 3(1), 7. doi:10.3390/condmat3010007 | es_ES |
dc.description.references | Koutentakis, G. M., Mistakidis, S. I., & Schmelcher, P. (2019). Probing ferromagnetic order in few-fermion correlated spin-flip dynamics. New Journal of Physics, 21(5), 053005. doi:10.1088/1367-2630/ab14ba | es_ES |
dc.description.references | Barasiński, A., Leoński, W., & Sowiński, T. (2014). Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices. Journal of the Optical Society of America B, 31(8), 1845. doi:10.1364/josab.31.001845 | es_ES |
dc.description.references | Carvalho, D. W. S., Foerster, A., & Gusmão, M. A. (2015). Ground states of spin-1 bosons in asymmetric double wells. Physical Review A, 91(3). doi:10.1103/physreva.91.033608 | es_ES |
dc.description.references | Harshman, N. L. (2014). Spectroscopy for a few atoms harmonically trapped in one dimension. Physical Review A, 89(3). doi:10.1103/physreva.89.033633 | es_ES |
dc.description.references | Pęcak, D., Gajda, M., & Sowiński, T. (2017). Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures. Few-Body Systems, 58(6). doi:10.1007/s00601-017-1321-3 | es_ES |
dc.description.references | Bugnion, P. O., & Conduit, G. J. (2013). Exploring exchange mechanisms with a cold-atom gas. Physical Review A, 88(1). doi:10.1103/physreva.88.013601 | es_ES |
dc.description.references | Sowiński, T., Gajda, M., & Rzażewski, K. (2016). Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential. EPL (Europhysics Letters), 113(5), 56003. doi:10.1209/0295-5075/113/56003 | es_ES |
dc.description.references | Yannouleas, C., Brandt, B. B., & Landman, U. (2016). Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg andt–Jmodels. New Journal of Physics, 18(7), 073018. doi:10.1088/1367-2630/18/7/073018 | es_ES |
dc.description.references | Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2018). Correlated tunneling dynamics of an ultracold Fermi-Fermi mixture confined in a double well. Physical Review A, 98(5). doi:10.1103/physreva.98.053614 | es_ES |
dc.description.references | Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2019). Phase-separation dynamics induced by an interaction quench of a correlated Fermi-Fermi mixture in a double well. Physical Review A, 99(1). doi:10.1103/physreva.99.013605 | es_ES |
dc.description.references | Barfknecht, R. E., Brouzos, I., & Foerster, A. (2015). Contact and static structure factor for bosonic and fermionic mixtures. Physical Review A, 91(4). doi:10.1103/physreva.91.043640 | es_ES |
dc.description.references | Rontani, M. (2013). Pair tunneling of two atoms out of a trap. Physical Review A, 88(4). doi:10.1103/physreva.88.043633 | es_ES |
dc.description.references | Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406 | es_ES |
dc.description.references | Pęcak, D., & Sowiński, T. (2016). Few strongly interacting ultracold fermions in one-dimensional traps of different shapes. Physical Review A, 94(4). doi:10.1103/physreva.94.042118 | es_ES |
dc.description.references | Pilati, S., Barbiero, L., Fazio, R., & Dell’Anna, L. (2017). One-dimensional repulsive Fermi gas in a tunable periodic potential. Physical Review A, 96(2). doi:10.1103/physreva.96.021601 | es_ES |
dc.description.references | Mathey, L., Altman, E., & Vishwanath, A. (2008). Noise Correlations in One-Dimensional Systems of Ultracold Fermions. Physical Review Letters, 100(24). doi:10.1103/physrevlett.100.240401 | es_ES |
dc.description.references | Mathey, L., Vishwanath, A., & Altman, E. (2009). Noise correlations in low-dimensional systems of ultracold atoms. Physical Review A, 79(1). doi:10.1103/physreva.79.013609 | es_ES |
dc.description.references | Brandt, B. B., Yannouleas, C., & Landman, U. (2017). Two-point momentum correlations of few ultracold quasi-one-dimensional trapped fermions: Diffraction patterns. Physical Review A, 96(5). doi:10.1103/physreva.96.053632 | es_ES |
dc.description.references | Brandt, B. B., Yannouleas, C., & Landman, U. (2018). Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms. Physical Review A, 97(5). doi:10.1103/physreva.97.053601 | es_ES |
dc.description.references | Yannouleas, C., & Landman, U. (2019). Third-order momentum correlation interferometry maps for entangled quantal states of three singly trapped massive ultracold fermions. Physical Review A, 100(2). doi:10.1103/physreva.100.023618 | es_ES |
dc.description.references | Pagano, G., Mancini, M., Cappellini, G., Lombardi, P., Schäfer, F., Hu, H., … Fallani, L. (2014). A one-dimensional liquid of fermions with tunable spin. Nature Physics, 10(3), 198-201. doi:10.1038/nphys2878 | es_ES |
dc.description.references | Guan, X.-W., Ma, Z.-Q., & Wilson, B. (2012). One-dimensional multicomponent fermions withδ-function interaction in strong- and weak-coupling limits:κ-component Fermi gas. Physical Review A, 85(3). doi:10.1103/physreva.85.033633 | es_ES |
dc.description.references | Beverland, M. E., Alagic, G., Martin, M. J., Koller, A. P., Rey, A. M., & Gorshkov, A. V. (2016). Realizing exactly solvableSU(N)magnets with thermal atoms. Physical Review A, 93(5). doi:10.1103/physreva.93.051601 | es_ES |
dc.description.references | Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2016). High-momentum tails as magnetic-structure probes for strongly correlatedSU(κ)fermionic mixtures in one-dimensional traps. Physical Review A, 94(5). doi:10.1103/physreva.94.053614 | es_ES |
dc.description.references | Hoffman, M. D., Loheac, A. C., Porter, W. J., & Drut, J. E. (2017). Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions. Physical Review A, 95(3). doi:10.1103/physreva.95.033602 | es_ES |
dc.description.references | Laird, E. K., Shi, Z.-Y., Parish, M. M., & Levinsen, J. (2017). SU( N ) fermions in a one-dimensional harmonic trap. Physical Review A, 96(3). doi:10.1103/physreva.96.032701 | es_ES |
dc.description.references | Xu, J., Feng, T., & Gu, Q. (2017). Spin dynamics of large-spin fermions in a harmonic trap. Annals of Physics, 379, 175-186. doi:10.1016/j.aop.2017.02.003 | es_ES |
dc.description.references | Decamp, J., Armagnat, P., Fang, B., Albert, M., Minguzzi, A., & Vignolo, P. (2016). Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides. New Journal of Physics, 18(5), 055011. doi:10.1088/1367-2630/18/5/055011 | es_ES |
dc.description.references | Lieb, E., & Mattis, D. (1962). Theory of Ferromagnetism and the Ordering of Electronic Energy Levels. Physical Review, 125(1), 164-172. doi:10.1103/physrev.125.164 | es_ES |
dc.description.references | Pan, L., Liu, Y., Hu, H., Zhang, Y., & Chen, S. (2017). Exact ordering of energy levels for one-dimensional interacting Fermi gases with SU (N) symmetry. Physical Review B, 96(7). doi:10.1103/physrevb.96.075149 | es_ES |
dc.description.references | Cazalilla, M. A., & Rey, A. M. (2014). Ultracold Fermi gases with emergent SU(N) symmetry. Reports on Progress in Physics, 77(12), 124401. doi:10.1088/0034-4885/77/12/124401 | es_ES |
dc.description.references | Girardeau, M. D. (2010). Two super-Tonks-Girardeau states of a trapped one-dimensional spinor Fermi gas. Physical Review A, 82(1). doi:10.1103/physreva.82.011607 | es_ES |
dc.description.references | Guan, Q., Yin, X. Y., Ebrahim Gharashi, S., & Blume, D. (2014). Energy spectrum of a harmonically trapped two-atom system with spin–orbit coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(16), 161001. doi:10.1088/0953-4075/47/16/161001 | es_ES |
dc.description.references | Schillaci, C. D., & Luu, T. C. (2015). Energy spectra of two interacting fermions with spin-orbit coupling in a harmonic trap. Physical Review A, 91(4). doi:10.1103/physreva.91.043606 | es_ES |
dc.description.references | Cui, X., & Ho, T.-L. (2014). Spin-orbit-coupled one-dimensional Fermi gases with infinite repulsion. Physical Review A, 89(1). doi:10.1103/physreva.89.013629 | es_ES |
dc.description.references | Yin, X. Y., Gopalakrishnan, S., & Blume, D. (2014). Harmonically trapped two-atom systems: Interplay of short-ranges-wave interaction and spin-orbit coupling. Physical Review A, 89(3). doi:10.1103/physreva.89.033606 | es_ES |
dc.description.references | Guan, Q., & Blume, D. (2015). Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling. Physical Review A, 92(2). doi:10.1103/physreva.92.023641 | es_ES |
dc.description.references | Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Zinner, N. T., & Valiente, M. (2013). Multicomponent Strongly Interacting Few-Fermion Systems in One Dimension. Few-Body Systems, 55(8-10), 839-842. doi:10.1007/s00601-013-0776-0 | es_ES |
dc.description.references | Kestner, J. P., & Duan, L.-M. (2007). Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap. Physical Review A, 76(3). doi:10.1103/physreva.76.033611 | es_ES |
dc.description.references | D’Amico, P., & Rontani, M. (2014). Three interacting atoms in a one-dimensional trap: a benchmark system for computational approaches. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(6), 065303. doi:10.1088/0953-4075/47/6/065303 | es_ES |
dc.description.references | Loft, N. J. S., Dehkharghani, A. S., Mehta, N. P., Volosniev, A. G., & Zinner, N. T. (2015). A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap. The European Physical Journal D, 69(3). doi:10.1140/epjd/e2015-50845-9 | es_ES |
dc.description.references | Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Hyperspherical treatment of strongly-interacting few-fermion systems in one dimension. The European Physical Journal Special Topics, 224(3), 585-590. doi:10.1140/epjst/e2015-02390-2 | es_ES |
dc.description.references | McGuire, J. B. (1965). Interacting Fermions in One Dimension. I. Repulsive Potential. Journal of Mathematical Physics, 6(3), 432-439. doi:10.1063/1.1704291 | es_ES |
dc.description.references | McGuire, J. B. (1966). Interacting Fermions in One Dimension. II. Attractive Potential. Journal of Mathematical Physics, 7(1), 123-132. doi:10.1063/1.1704798 | es_ES |
dc.description.references | Astrakharchik, G. E., & Brouzos, I. (2013). Trapped one-dimensional ideal Fermi gas with a single impurity. Physical Review A, 88(2). doi:10.1103/physreva.88.021602 | es_ES |
dc.description.references | Gharashi, S. E., Yin, X. Y., Yan, Y., & Blume, D. (2015). One-dimensional Fermi gas with a single impurity in a harmonic trap: Perturbative description of the upper branch. Physical Review A, 91(1). doi:10.1103/physreva.91.013620 | es_ES |
dc.description.references | Pricoupenko, L., & Castin, Y. (2004). One particle in a box: The simplest model for a Fermi gas in the unitary limit. Physical Review A, 69(5). doi:10.1103/physreva.69.051601 | es_ES |
dc.description.references | Mistakidis, S. I., Katsimiga, G. C., Koutentakis, G. M., & Schmelcher, P. (2019). Repulsive Fermi polarons and their induced interactions in binary mixtures of ultracold atoms. New Journal of Physics, 21(4), 043032. doi:10.1088/1367-2630/ab1045 | es_ES |
dc.description.references | Gharashi, S. E., & Blume, D. (2013). Correlations of the Upper Branch of 1D Harmonically Trapped Two-Component Fermi Gases. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045302 | es_ES |
dc.description.references | Sowiński, T., Grass, T., Dutta, O., & Lewenstein, M. (2013). Few interacting fermions in a one-dimensional harmonic trap. Physical Review A, 88(3). doi:10.1103/physreva.88.033607 | es_ES |
dc.description.references | Bugnion, P. O., & Conduit, G. J. (2013). Ferromagnetic spin correlations in a few-fermion system. Physical Review A, 87(6). doi:10.1103/physreva.87.060502 | es_ES |
dc.description.references | Guan, L., Chen, S., Wang, Y., & Ma, Z.-Q. (2009). Exact Solution for Infinitely Strongly Interacting Fermi Gases in Tight Waveguides. Physical Review Letters, 102(16). doi:10.1103/physrevlett.102.160402 | es_ES |
dc.description.references | Płodzień, M., Demkowicz-Dobrzański, R., & Sowiński, T. (2018). Few-fermion thermometry. Physical Review A, 97(6). doi:10.1103/physreva.97.063619 | es_ES |
dc.description.references | Lindgren, E. J., Rotureau, J., Forssén, C., Volosniev, A. G., & Zinner, N. T. (2014). Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap. New Journal of Physics, 16(6), 063003. doi:10.1088/1367-2630/16/6/063003 | es_ES |
dc.description.references | Carbonell-Coronado, C., Soto, F. D., & Gordillo, M. C. (2016). Ordering in one-dimensional few-fermion clusters with repulsive interactions. New Journal of Physics, 18(2), 025015. doi:10.1088/1367-2630/18/2/025015 | es_ES |
dc.description.references | Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2014). Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Physical Review A, 90(1). doi:10.1103/physreva.90.013611 | es_ES |
dc.description.references | Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2014). Strongly interacting confined quantum systems in one dimension. Nature Communications, 5(1). doi:10.1038/ncomms6300 | es_ES |
dc.description.references | Yang, L., Guan, L., & Pu, H. (2015). Strongly interacting quantum gases in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.043634 | es_ES |
dc.description.references | Levinsen, J., Massignan, P., Bruun, G. M., & Parish, M. M. (2015). Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential. Science Advances, 1(6), e1500197. doi:10.1126/sciadv.1500197 | es_ES |
dc.description.references | Marchukov, O. V., Eriksen, E. H., Midtgaard, J. M., Kalaee, A. A. S., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2016). Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results. The European Physical Journal D, 70(2). doi:10.1140/epjd/e2016-60489-x | es_ES |
dc.description.references | Loft, N. J. S., Kristensen, L. B., Thomsen, A. E., Volosniev, A. G., & Zinner, N. T. (2016). CONAN—The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension. Computer Physics Communications, 209, 171-182. doi:10.1016/j.cpc.2016.08.021 | es_ES |
dc.description.references | Deuretzbacher, F., & Santos, L. (2017). Tuning an effective spin chain of three strongly interacting one-dimensional fermions with the transversal confinement. Physical Review A, 96(1). doi:10.1103/physreva.96.013629 | es_ES |
dc.description.references | Volosniev, A. G., Petrosyan, D., Valiente, M., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Engineering the dynamics of effective spin-chain models for strongly interacting atomic gases. Physical Review A, 91(2). doi:10.1103/physreva.91.023620 | es_ES |
dc.description.references | Loft, N. J. S., Marchukov, O. V., Petrosyan, D., & Zinner, N. T. (2016). Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer. New Journal of Physics, 18(4), 045011. doi:10.1088/1367-2630/18/4/045011 | es_ES |
dc.description.references | Marchukov, O. V., Volosniev, A. G., Valiente, M., Petrosyan, D., & Zinner, N. T. (2016). Quantum spin transistor with a Heisenberg spin chain. Nature Communications, 7(1). doi:10.1038/ncomms13070 | es_ES |
dc.description.references | Liu, Y., Chen, S., & Zhang, Y. (2017). Spectroscopy and spin dynamics for strongly interacting few-spinor bosons in one-dimensional traps. Physical Review A, 95(4). doi:10.1103/physreva.95.043628 | es_ES |
dc.description.references | Matveev, K. A., & Furusaki, A. (2008). Spectral Functions of Strongly Interacting Isospin-12Bosons in One Dimension. Physical Review Letters, 101(17). doi:10.1103/physrevlett.101.170403 | es_ES |
dc.description.references | Massignan, P., Levinsen, J., & Parish, M. M. (2015). Magnetism in Strongly Interacting One-Dimensional Quantum Mixtures. Physical Review Letters, 115(24). doi:10.1103/physrevlett.115.247202 | es_ES |
dc.description.references | Yang, L., & Cui, X. (2016). Effective spin-chain model for strongly interacting one-dimensional atomic gases with an arbitrary spin. Physical Review A, 93(1). doi:10.1103/physreva.93.013617 | es_ES |
dc.description.references | Söffing, S. A., Bortz, M., & Eggert, S. (2011). Density profile of interacting fermions in a one-dimensional optical trap. Physical Review A, 84(2). doi:10.1103/physreva.84.021602 | es_ES |
dc.description.references | Rotureau, J. (2013). Interaction for the trapped fermi gas from a unitary transformation of the exact two-body spectrum. The European Physical Journal D, 67(7). doi:10.1140/epjd/e2013-40156-8 | es_ES |
dc.description.references | Haugset, T., & Haugerud, H. (1998). Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions. Physical Review A, 57(5), 3809-3817. doi:10.1103/physreva.57.3809 | es_ES |
dc.description.references | Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Massignan, P., … Moszynski, R. (2015). Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment. New Journal of Physics, 17(11), 115001. doi:10.1088/1367-2630/17/11/115001 | es_ES |
dc.description.references | Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Moszynski, R., … Massignan, P. (2015). Crossover between few and many fermions in a harmonic trap. Physical Review A, 92(6). doi:10.1103/physreva.92.061601 | es_ES |
dc.description.references | Kohn, W. (1999). Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 71(5), 1253-1266. doi:10.1103/revmodphys.71.1253 | es_ES |
dc.description.references | Xianlong, G., Polini, M., Asgari, R., & Tosi, M. P. (2006). Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps. Physical Review A, 73(3). doi:10.1103/physreva.73.033609 | es_ES |
dc.description.references | Rammelmüller, L., Porter, W. J., Drut, J. E., & Braun, J. (2017). Surmounting the sign problem in nonrelativistic calculations: A case study with mass-imbalanced fermions. Physical Review D, 96(9). doi:10.1103/physrevd.96.094506 | es_ES |
dc.description.references | Rammelmüller, L., Drut, J. E., & Braun, J. (2018). A complex Langevin approach to ultracold fermions. Journal of Physics: Conference Series, 1041, 012006. doi:10.1088/1742-6596/1041/1/012006 | es_ES |
dc.description.references | Andersen, M. E. S., Dehkharghani, A. S., Volosniev, A. G., Lindgren, E. J., & Zinner, N. T. (2016). An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems. Scientific Reports, 6(1). doi:10.1038/srep28362 | es_ES |
dc.description.references | Pęcak, D., Dehkharghani, A. S., Zinner, N. T., & Sowiński, T. (2017). Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach. Physical Review A, 95(5). doi:10.1103/physreva.95.053632 | es_ES |
dc.description.references | Bellotti, F. F., Dehkharghani, A. S., & Zinner, N. T. (2017). Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps. The European Physical Journal D, 71(2). doi:10.1140/epjd/e2017-70650-8 | es_ES |
dc.description.references | Rubeni, D., Foerster, A., & Roditi, I. (2012). Two interacting fermions in a one-dimensional harmonic trap: Matching the Bethe ansatz and variational approaches. Physical Review A, 86(4). doi:10.1103/physreva.86.043619 | es_ES |
dc.description.references | Jastrow, R. (1955). Many-Body Problem with Strong Forces. Physical Review, 98(5), 1479-1484. doi:10.1103/physrev.98.1479 | es_ES |
dc.description.references | Brouzos, I., & Schmelcher, P. (2013). Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach. Physical Review A, 87(2). doi:10.1103/physreva.87.023605 | es_ES |
dc.description.references | Kościk, P., Płodzień, M., & Sowiński, T. (2018). Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement. EPL (Europhysics Letters), 123(3), 36001. doi:10.1209/0295-5075/123/36001 | es_ES |
dc.description.references | Cooper, L. N. (1956). Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104(4), 1189-1190. doi:10.1103/physrev.104.1189 | es_ES |
dc.description.references | Liu, X.-J., Hu, H., & Drummond, P. D. (2010). Three attractively interacting fermions in a harmonic trap: Exact solution, ferromagnetism, and high-temperature thermodynamics. Physical Review A, 82(2). doi:10.1103/physreva.82.023619 | es_ES |
dc.description.references | Sowiński, T., Gajda, M., & Rzażewski, K. (2015). Pairing in a system of a few attractive fermions in a harmonic trap. EPL (Europhysics Letters), 109(2), 26005. doi:10.1209/0295-5075/109/26005 | es_ES |
dc.description.references | D’Amico, P., & Rontani, M. (2015). Pairing of a few Fermi atoms in one dimension. Physical Review A, 91(4). doi:10.1103/physreva.91.043610 | es_ES |
dc.description.references | Hofmann, J., Lobos, A. M., & Galitski, V. (2016). Parity effect in a mesoscopic Fermi gas. Physical Review A, 93(6). doi:10.1103/physreva.93.061602 | es_ES |
dc.description.references | Matveev, K. A., & Larkin, A. I. (1997). Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains. Physical Review Letters, 78(19), 3749-3752. doi:10.1103/physrevlett.78.3749 | es_ES |
dc.description.references | Sowiński, T. (2015). Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap. Few-Body Systems, 56(10), 659-663. doi:10.1007/s00601-015-1017-5 | es_ES |
dc.description.references | Bugnion, P. O., Lofthouse, J. A., & Conduit, G. J. (2013). Inhomogeneous State of Few-Fermion Superfluids. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045301 | es_ES |
dc.description.references | Berger, C. E., Anderson, E. R., & Drut, J. E. (2015). Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice Monte Carlo calculations. Physical Review A, 91(5). doi:10.1103/physreva.91.053618 | es_ES |
dc.description.references | McKenney, J. R., Shill, C. R., Porter, W. J., & Drut, J. E. (2016). Ground-state energy, density profiles, and momentum distribution of attractively interacting 1D Fermi gases with hard-wall boundaries: a Monte Carlo study. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(22), 225001. doi:10.1088/0953-4075/49/22/225001 | es_ES |
dc.description.references | Tan, S. (2008). Energetics of a strongly correlated Fermi gas. Annals of Physics, 323(12), 2952-2970. doi:10.1016/j.aop.2008.03.004 | es_ES |
dc.description.references | Rammelmüller, L., Porter, W. J., Braun, J., & Drut, J. E. (2017). Evolution from few- to many-body physics in one-dimensional Fermi systems: One- and two-body density matrices and particle-partition entanglement. Physical Review A, 96(3). doi:10.1103/physreva.96.033635 | es_ES |
dc.description.references | Hao, Y., Zhang, Y., & Chen, S. (2007). One-dimensional fermionic gases with attractivep-wave interaction in a hard-wall trap. Physical Review A, 76(6). doi:10.1103/physreva.76.063601 | es_ES |
dc.description.references | Pȩcak, D., Gajda, M., & Sowiński, T. (2016). Two-flavour mixture of a few fermions of different mass in a one-dimensional harmonic trap. New Journal of Physics, 18(1), 013030. doi:10.1088/1367-2630/18/1/013030 | es_ES |
dc.description.references | Cui, X., & Ho, T.-L. (2013). Phase Separation in Mixtures of Repulsive Fermi Gases Driven by Mass Difference. Physical Review Letters, 110(16). doi:10.1103/physrevlett.110.165302 | es_ES |
dc.description.references | Cui, X., & Ho, T.-L. (2014). Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases. Physical Review A, 89(2). doi:10.1103/physreva.89.023611 | es_ES |
dc.description.references | Fratini, E., & Pilati, S. (2014). Zero-temperature equation of state and phase diagram of repulsive fermionic mixtures. Physical Review A, 90(2). doi:10.1103/physreva.90.023605 | es_ES |
dc.description.references | Blume, D. (2008). Small mass- and trap-imbalanced two-component Fermi systems. Physical Review A, 78(1). doi:10.1103/physreva.78.013613 | es_ES |
dc.description.references | Baranov, M. A., Lobo, C., & Shlyapnikov, G. V. (2008). Superfluid pairing between fermions with unequal masses. Physical Review A, 78(3). doi:10.1103/physreva.78.033620 | es_ES |
dc.description.references | Stewart, G. R. (1984). Heavy-fermion systems. Reviews of Modern Physics, 56(4), 755-787. doi:10.1103/revmodphys.56.755 | es_ES |
dc.description.references | Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P., & Törmä, P. (2018). The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Reports on Progress in Physics, 81(4), 046401. doi:10.1088/1361-6633/aaa4ad | es_ES |
dc.description.references | Pęcak, D., & Sowiński, T. (2019). Intercomponent correlations in attractive one-dimensional mass-imbalanced few-body mixtures. Physical Review A, 99(4). doi:10.1103/physreva.99.043612 | es_ES |
dc.description.references | Onofrio, R. (2016). Cooling and thermometry of atomic Fermi gases. Physics-Uspekhi, 59(11), 1129-1153. doi:10.3367/ufne.2016.07.037873 | es_ES |
dc.description.references | Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles, J., & Salomon, C. (2001). Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea. Physical Review Letters, 87(8). doi:10.1103/physrevlett.87.080403 | es_ES |
dc.description.references | Truscott, A. G. (2001). Observation of Fermi Pressure in a Gas of Trapped Atoms. Science, 291(5513), 2570-2572. doi:10.1126/science.1059318 | es_ES |
dc.description.references | Fukuhara, T., Sugawa, S., Takasu, Y., & Takahashi, Y. (2009). All-optical formation of quantum degenerate mixtures. Physical Review A, 79(2). doi:10.1103/physreva.79.021601 | es_ES |
dc.description.references | Wu, C.-H., Santiago, I., Park, J. W., Ahmadi, P., & Zwierlein, M. W. (2011). Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Physical Review A, 84(1). doi:10.1103/physreva.84.011601 | es_ES |
dc.description.references | Roati, G., Riboli, F., Modugno, G., & Inguscio, M. (2002). Fermi-Bose Quantum DegenerateK40−R87bMixture with Attractive Interaction. Physical Review Letters, 89(15). doi:10.1103/physrevlett.89.150403 | es_ES |
dc.description.references | Hadzibabic, Z., Stan, C. A., Dieckmann, K., Gupta, S., Zwierlein, M. W., Görlitz, A., & Ketterle, W. (2002). Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases. Physical Review Letters, 88(16). doi:10.1103/physrevlett.88.160401 | es_ES |
dc.description.references | DeSalvo, B. J., Patel, K., Johansen, J., & Chin, C. (2017). Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. Physical Review Letters, 119(23). doi:10.1103/physrevlett.119.233401 | es_ES |
dc.description.references | Imambekov, A., & Demler, E. (2006). Applications of exact solution for strongly interacting one-dimensional Bose–Fermi mixture: Low-temperature correlation functions, density profiles, and collective modes. Annals of Physics, 321(10), 2390-2437. doi:10.1016/j.aop.2005.11.017 | es_ES |
dc.description.references | Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2017). Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures. Physical Review A, 95(4). doi:10.1103/physreva.95.043630 | es_ES |
dc.description.references | Fang, B., Vignolo, P., Miniatura, C., & Minguzzi, A. (2009). Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap. Physical Review A, 79(2). doi:10.1103/physreva.79.023623 | es_ES |
dc.description.references | Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2017). Strongly correlated one-dimensional Bose–Fermi quantum mixtures: symmetry and correlations. New Journal of Physics, 19(12), 125001. doi:10.1088/1367-2630/aa94ef | es_ES |
dc.description.references | Deuretzbacher, F., Becker, D., & Santos, L. (2016). Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases. Physical Review A, 94(2). doi:10.1103/physreva.94.023606 | es_ES |
dc.description.references | Dehkharghani, A. S., Bellotti, F. F., & Zinner, N. T. (2017). Analytical and numerical studies of Bose–Fermi mixtures in a one-dimensional harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(14), 144002. doi:10.1088/1361-6455/aa7797 | es_ES |
dc.description.references | Wang, H., Hao, Y., & Zhang, Y. (2012). Density-functional theory for one-dimensional harmonically trapped Bose-Fermi mixture. Physical Review A, 85(5). doi:10.1103/physreva.85.053630 | es_ES |
dc.description.references | Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Bunching-antibunching crossover in harmonically trapped few-body Bose-Fermi mixtures. Physical Review A, 98(2). doi:10.1103/physreva.98.023602 | es_ES |
dc.description.references | Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Entanglement Induced Interactions in Binary Mixtures. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043401 | es_ES |
dc.description.references | Lelas, K., Jukić, D., & Buljan, H. (2009). Ground-state properties of a one-dimensional strongly interacting Bose-Fermi mixture in a double-well potential. Physical Review A, 80(5). doi:10.1103/physreva.80.053617 | es_ES |
dc.description.references | Lü, X., Yin, X., & Zhang, Y. (2010). Hard-core Bose-Fermi mixture in one-dimensional split traps. Physical Review A, 81(4). doi:10.1103/physreva.81.043607 | es_ES |
dc.description.references | Chen, S., Cao, J., & Gu, S.-J. (2010). Mixture of Tonks-Girardeau gas and Fermi gas in one-dimensional optical lattices. Physical Review A, 82(5). doi:10.1103/physreva.82.053625 | es_ES |
dc.description.references | Šeba, P. (1986). Some remarks on the δ′-interaction in one dimension. Reports on Mathematical Physics, 24(1), 111-120. doi:10.1016/0034-4877(86)90045-5 | es_ES |
dc.description.references | Sen, D. (2003). The fermionic limit of the -function Bose gas: a pseudopotential approach. Journal of Physics A: Mathematical and General, 36(27), 7517-7531. doi:10.1088/0305-4470/36/27/305 | es_ES |
dc.description.references | Kanjilal, K., & Blume, D. (2004). Nondivergent pseudopotential treatment of spin-polarized fermions under one- and three-dimensional harmonic confinement. Physical Review A, 70(4). doi:10.1103/physreva.70.042709 | es_ES |
dc.description.references | Cheon, T., & Shigehara, T. (1999). Fermion-Boson Duality of One-Dimensional Quantum Particles with Generalized Contact Interactions. Physical Review Letters, 82(12), 2536-2539. doi:10.1103/physrevlett.82.2536 | es_ES |
dc.description.references | Cui, X. (2016). Universal one-dimensional atomic gases near odd-wave resonance. Physical Review A, 94(4). doi:10.1103/physreva.94.043636 | es_ES |
dc.description.references | Sun, B., Zhou, D. L., & You, L. (2006). Entanglement between two interacting atoms in a one-dimensional harmonic trap. Physical Review A, 73(1). doi:10.1103/physreva.73.012336 | es_ES |
dc.description.references | Bender, S. A., Erker, K. D., & Granger, B. E. (2005). Exponentially Decaying Correlations in a Gas of Strongly Interacting Spin-Polarized 1D Fermions with Zero-Range Interactions. Physical Review Letters, 95(23). doi:10.1103/physrevlett.95.230404 | es_ES |
dc.description.references | Muth, D., Fleischhauer, M., & Schmidt, B. (2010). Discretized versus continuous models ofp-wave interacting fermions in one dimension. Physical Review A, 82(1). doi:10.1103/physreva.82.013602 | es_ES |
dc.description.references | Zhang, Z. D., Astrakharchik, G. E., Aveline, D. C., Choi, S., Perrin, H., Bergeman, T. H., & Olshanii, M. (2014). Breakdown of scale invariance in the vicinity of the Tonks-Girardeau limit. Physical Review A, 89(6). doi:10.1103/physreva.89.063616 | es_ES |
dc.description.references | Hu, H., Pan, L., & Chen, S. (2016). Strongly interacting one-dimensional quantum gas mixtures with weakp-wave interactions. Physical Review A, 93(3). doi:10.1103/physreva.93.033636 | es_ES |
dc.description.references | Yang, L., Guan, X., & Cui, X. (2016). Engineering quantum magnetism in one-dimensional trapped Fermi gases withp-wave interactions. Physical Review A, 93(5). doi:10.1103/physreva.93.051605 | es_ES |
dc.description.references | Trautmann, A., Ilzhöfer, P., Durastante, G., Politi, C., Sohmen, M., Mark, M. J., & Ferlaino, F. (2018). Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms. Physical Review Letters, 121(21). doi:10.1103/physrevlett.121.213601 | es_ES |
dc.description.references | Sinha, S., & Santos, L. (2007). Cold Dipolar Gases in Quasi-One-Dimensional Geometries. Physical Review Letters, 99(14). doi:10.1103/physrevlett.99.140406 | es_ES |
dc.description.references | Deuretzbacher, F., Cremon, J. C., & Reimann, S. M. (2010). Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap. Physical Review A, 81(6). doi:10.1103/physreva.81.063616 | es_ES |
dc.description.references | James, D. F. V. (1998). Quantum dynamics of cold trapped ions with application to quantum computation. Applied Physics B: Lasers and Optics, 66(2), 181-190. doi:10.1007/s003400050373 | es_ES |
dc.description.references | Kościk, P. (2015). The von Neumann entanglement entropy for Wigner-crystal states in one dimensional N-particle systems. Physics Letters A, 379(4), 293-298. doi:10.1016/j.physleta.2014.12.001 | es_ES |
dc.description.references | Kościk, P. (2017). Fermionized Dipolar Bosons Trapped in a Harmonic Trap. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1229-y | es_ES |
dc.description.references | Oldham, K. B. (1968). Approximations for the x expx 2 erfc x Function. Mathematics of Computation, 22(102), 454. doi:10.2307/2004681 | es_ES |
dc.description.references | Abad, M., Guilleumas, M., Mayol, R., Pi, M., & Jezek, D. M. (2011). A dipolar self-induced bosonic Josephson junction. EPL (Europhysics Letters), 94(1), 10004. doi:10.1209/0295-5075/94/10004 | es_ES |
dc.description.references | Gallemí, A., Guilleumas, M., Mayol, R., & Sanpera, A. (2013). Role of anisotropy in dipolar bosons in triple-well potentials. Physical Review A, 88(6). doi:10.1103/physreva.88.063645 | es_ES |
dc.description.references | Mazzarella, G., & Penna, V. (2015). Localization–delocalization transition of dipolar bosons in a four-well potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(6), 065001. doi:10.1088/0953-4075/48/6/065001 | es_ES |
dc.description.references | Sowiński, T., Dutta, O., Hauke, P., Tagliacozzo, L., & Lewenstein, M. (2012). Dipolar Molecules in Optical Lattices. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115301 | es_ES |
dc.description.references | Volosniev, A. G., Armstrong, J. R., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2013). Bound states of dipolar bosons in one-dimensional systems. New Journal of Physics, 15(4), 043046. doi:10.1088/1367-2630/15/4/043046 | es_ES |
dc.description.references | Bjerlin, J., Bengtsson, J., Deuretzbacher, F., Kristinsdóttir, L. H., & Reimann, S. M. (2018). Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation. Physical Review A, 97(2). doi:10.1103/physreva.97.023634 | es_ES |
dc.description.references | Deuretzbacher, F., Bruun, G. M., Pethick, C. J., Jona-Lasinio, M., Reimann, S. M., & Santos, L. (2013). Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions. Physical Review A, 88(3). doi:10.1103/physreva.88.033611 | es_ES |
dc.description.references | Graß, T. (2015). Quench dynamics of dipolar fermions in a one-dimensional harmonic trap. Physical Review A, 92(2). doi:10.1103/physreva.92.023634 | es_ES |
dc.description.references | Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083 | es_ES |
dc.description.references | Pachos, J. K. (2009). Introduction to Topological Quantum Computation. doi:10.1017/cbo9780511792908 | es_ES |
dc.description.references | Aguado, M., Brennen, G. K., Verstraete, F., & Cirac, J. I. (2008). Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.260501 | es_ES |
dc.description.references | Keilmann, T., Lanzmich, S., McCulloch, I., & Roncaglia, M. (2011). Statistically induced phase transitions and anyons in 1D optical lattices. Nature Communications, 2(1). doi:10.1038/ncomms1353 | es_ES |
dc.description.references | Girardeau, M. D. (2006). Anyon-Fermion Mapping and Applications to Ultracold Gases in Tight Waveguides. Physical Review Letters, 97(10). doi:10.1103/physrevlett.97.100402 | es_ES |
dc.description.references | Hao, Y., Zhang, Y., & Chen, S. (2008). Ground-state properties of one-dimensional anyon gases. Physical Review A, 78(2). doi:10.1103/physreva.78.023631 | es_ES |
dc.description.references | Del Campo, A. (2008). Fermionization and bosonization of expanding one-dimensional anyonic fluids. Physical Review A, 78(4). doi:10.1103/physreva.78.045602 | es_ES |
dc.description.references | Zinner, N. T. (2015). Strongly interacting mesoscopic systems of anyons in one dimension. Physical Review A, 92(6). doi:10.1103/physreva.92.063634 | es_ES |
dc.description.references | Colcelli, A., Mussardo, G., & Trombettoni, A. (2018). Deviations from off-diagonal long-range order in one-dimensional quantum systems. EPL (Europhysics Letters), 122(5), 50006. doi:10.1209/0295-5075/122/50006 | es_ES |
dc.description.references | Kundu, A. (1999). Exact Solution of DoubleδFunction Bose Gas through an Interacting Anyon Gas. Physical Review Letters, 83(7), 1275-1278. doi:10.1103/physrevlett.83.1275 | es_ES |
dc.description.references | Del Campo, A., Delgado, F., García-Calderón, G., Muga, J. G., & Raizen, M. G. (2006). Decay by tunneling of bosonic and fermionic Tonks-Girardeau gases. Physical Review A, 74(1). doi:10.1103/physreva.74.013605 | es_ES |
dc.description.references | Del Campo, A. (2011). Long-time behavior of many-particle quantum decay. Physical Review A, 84(1). doi:10.1103/physreva.84.012113 | es_ES |
dc.description.references | Lode, A. U. J., Klaiman, S., Alon, O. E., Streltsov, A. I., & Cederbaum, L. S. (2014). Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics. Physical Review A, 89(5). doi:10.1103/physreva.89.053620 | es_ES |
dc.description.references | Gharashi, S. E., & Blume, D. (2015). Tunneling dynamics of two interacting one-dimensional particles. Physical Review A, 92(3). doi:10.1103/physreva.92.033629 | es_ES |
dc.description.references | Lundmark, R., Forssén, C., & Rotureau, J. (2015). Tunneling theory for tunable open quantum systems of ultracold atoms in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.041601 | es_ES |
dc.description.references | Dobrzyniecki, J., & Sowiński, T. (2018). Dynamics of a few interacting bosons escaping from an open well. Physical Review A, 98(1). doi:10.1103/physreva.98.013634 | es_ES |
dc.description.references | Dobrzyniecki, J., & Sowiński, T. (2019). Momentum correlations of a few ultracold bosons escaping from an open well. Physical Review A, 99(6). doi:10.1103/physreva.99.063608 | es_ES |
dc.description.references | Pons, M., Sokolovski, D., & del Campo, A. (2012). Fidelity of fermionic-atom number states subjected to tunneling decay. Physical Review A, 85(2). doi:10.1103/physreva.85.022107 | es_ES |
dc.description.references | Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles. Few-Body Systems, 57(1), 11-43. doi:10.1007/s00601-015-1024-6 | es_ES |
dc.description.references | Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries. II. N Particles. Few-Body Systems, 57(1), 45-69. doi:10.1007/s00601-015-1025-5 | es_ES |
dc.description.references | Yurovsky, V. A. (2014). Permutation Symmetry in Spinor Quantum Gases: Selection Rules, Conservation Laws, and Correlations. Physical Review Letters, 113(20). doi:10.1103/physrevlett.113.200406 | es_ES |