- -

One-dimensional mixtures of several ultracold atoms: a review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-dimensional mixtures of several ultracold atoms: a review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sowinski, T. es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.date.accessioned 2020-12-05T04:32:50Z
dc.date.available 2020-12-05T04:32:50Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0034-4885 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156516
dc.description.abstract [EN] Recent theoretical and experimental progress on studying one-dimensional systems of bosonic, fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad context of mesoscopic quantum physics. We pay special attention to limiting cases of very strong or very weak interactions and transitions between them. For bosonic mixtures, we describe the developments in systems of three and four atoms as well as different extensions to larger numbers of particles. We also briefly review progress in the case of spinor Bose gases of a few atoms. For fennionic mixtures, we discuss a special role of spin and present a detailed discussion of the two- and three-atom cases. We discuss the advantages and disadvantages of different computation methods applied to systems with intermediate interactions. In the case of very strong repulsion, close to the infinite limit, we discuss approaches based on effective spin chain descriptions. We also report on recent studies on higher-spin mixtures and inter-component attractive forces. For both statistics, we pay particular attention to impurity problems and mass imbalance cases. Finally, we describe the recent advances on trapped Bose-Fermi mixtures, which allow for a theoretical combination of previous concepts, well illustrating the importance of quantum statistics and inter-particle interactions. Lastly, we report on fundamental questions related to the subject which we believe will inspire further theoretical developments and experimental verification. es_ES
dc.description.sponsorship T S acknowledge financial support from the (Polish) National Science Centre with Grant No. 2016/22/E/ST2/00555. MAGM acknowledges funding from the Spanish Ministry MINECO (National Plan15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund, Fundacio Cellex, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341 and CERCA/Program), ERC AdG OSYRIS, EU FETPRO QUIC, and the (Polish) National Science Centre, Symfonia Grant No. 2016/20/W/ST4/00314. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Reports on Progress in Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject One-dimensional systems es_ES
dc.subject Few-body systems es_ES
dc.subject Ultra-cold atoms es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title One-dimensional mixtures of several ultracold atoms: a review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-6633/ab3a80 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339106/EU/Open SYstems RevISited: From Brownian motion to quantum simulators/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F22%2FE%2FST2%2F00555/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641122/EU/Quantum simulations of insulators and conductors/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya/Grups de Recerca Reconeguts i Finançats per la Generalitat de Catalunya 2017-2019/2017 SGR 1341/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2016-79508-P/ES/FRONTERAS DE LA FISICA TEORICA ATOMICA, MOLECULAR, Y OPTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2015-0522/ES/AGR-INSTITUTO DE CIENCIAS FOTONICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F20%2FW%2FST4%2F00314/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Sowinski, T.; Garcia March, MA. (2019). One-dimensional mixtures of several ultracold atoms: a review. Reports on Progress in Physics. 82(10):1-44. https://doi.org/10.1088/1361-6633/ab3a80 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-6633/ab3a80 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 44 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 82 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 31404916 es_ES
dc.relation.pasarela S\409619 es_ES
dc.contributor.funder Fundación Cellex es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. doi:10.1017/cbo9780511802850 es_ES
dc.description.references Lewenstein, M., Sanpera, A., & Ahufinger, V. (2012). Ultracold Atoms in Optical Lattices. doi:10.1093/acprof:oso/9780199573127.001.0001 es_ES
dc.description.references Blume, D. (2010). Jumping from two and three particles to infinitely many. Physics, 3. doi:10.1103/physics.3.74 es_ES
dc.description.references Blume, D. (2012). Few-body physics with ultracold atomic and molecular systems in traps. Reports on Progress in Physics, 75(4), 046401. doi:10.1088/0034-4885/75/4/046401 es_ES
dc.description.references Kinoshita, T. (2004). Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305(5687), 1125-1128. doi:10.1126/science.1100700 es_ES
dc.description.references Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., … Bloch, I. (2004). Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277-281. doi:10.1038/nature02530 es_ES
dc.description.references Kinoshita, T., Wenger, T., & Weiss, D. S. (2005). Local Pair Correlations in One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190406 es_ES
dc.description.references Cheinet, P., Trotzky, S., Feld, M., Schnorrberger, U., Moreno-Cardoner, M., Fölling, S., & Bloch, I. (2008). Counting Atoms Using Interaction Blockade in an Optical Superlattice. Physical Review Letters, 101(9). doi:10.1103/physrevlett.101.090404 es_ES
dc.description.references Will, S., Best, T., Schneider, U., Hackermüller, L., Lühmann, D.-S., & Bloch, I. (2010). Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465(7295), 197-201. doi:10.1038/nature09036 es_ES
dc.description.references He, X., Xu, P., Wang, J., & Zhan, M. (2010). High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Optics Express, 18(13), 13586. doi:10.1364/oe.18.013586 es_ES
dc.description.references Bourgain, R., Pellegrino, J., Fuhrmanek, A., Sortais, Y. R. P., & Browaeys, A. (2013). Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023428 es_ES
dc.description.references Moritz, H., Stöferle, T., Günter, K., Köhl, M., & Esslinger, T. (2005). Confinement Induced Molecules in a 1D Fermi Gas. Physical Review Letters, 94(21). doi:10.1103/physrevlett.94.210401 es_ES
dc.description.references Liao, Y., Rittner, A. S. C., Paprotta, T., Li, W., Partridge, G. B., Hulet, R. G., … Mueller, E. J. (2010). Spin-imbalance in a one-dimensional Fermi gas. Nature, 467(7315), 567-569. doi:10.1038/nature09393 es_ES
dc.description.references Serwane, F., Zurn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., & Jochim, S. (2011). Deterministic Preparation of a Tunable Few-Fermion System. Science, 332(6027), 336-338. doi:10.1126/science.1201351 es_ES
dc.description.references Wenz, A. N., Zurn, G., Murmann, S., Brouzos, I., Lompe, T., & Jochim, S. (2013). From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 342(6157), 457-460. doi:10.1126/science.1240516 es_ES
dc.description.references Murmann, S., Deuretzbacher, F., Zürn, G., Bjerlin, J., Reimann, S. M., Santos, L., … Jochim, S. (2015). Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. Physical Review Letters, 115(21). doi:10.1103/physrevlett.115.215301 es_ES
dc.description.references Murmann, S., Bergschneider, A., Klinkhamer, V. M., Zürn, G., Lompe, T., & Jochim, S. (2015). Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model. Physical Review Letters, 114(8). doi:10.1103/physrevlett.114.080402 es_ES
dc.description.references McGuire, J. B. (1964). Study of Exactly Soluble One‐Dimensional N‐Body Problems. Journal of Mathematical Physics, 5(5), 622-636. doi:10.1063/1.1704156 es_ES
dc.description.references Zürn, G., Serwane, F., Lompe, T., Wenz, A. N., Ries, M. G., Bohn, J. E., & Jochim, S. (2012). Fermionization of Two Distinguishable Fermions. Physical Review Letters, 108(7). doi:10.1103/physrevlett.108.075303 es_ES
dc.description.references Zürn, G., Wenz, A. N., Murmann, S., Bergschneider, A., Lompe, T., & Jochim, S. (2013). Pairing in Few-Fermion Systems with Attractive Interactions. Physical Review Letters, 111(17). doi:10.1103/physrevlett.111.175302 es_ES
dc.description.references Chuu, C.-S., Schreck, F., Meyrath, T. P., Hanssen, J. L., Price, G. N., & Raizen, M. G. (2005). Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas. Physical Review Letters, 95(26). doi:10.1103/physrevlett.95.260403 es_ES
dc.description.references Rontani, M. (2012). Tunneling Theory of Two Interacting Atoms in a Trap. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115302 es_ES
dc.description.references Lode, A. U. J., Streltsov, A. I., Sakmann, K., Alon, O. E., & Cederbaum, L. S. (2012). How an interacting many-body system tunnels through a potential barrier to open space. Proceedings of the National Academy of Sciences, 109(34), 13521-13525. doi:10.1073/pnas.1201345109 es_ES
dc.description.references Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885-964. doi:10.1103/revmodphys.80.885 es_ES
dc.description.references Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225-1286. doi:10.1103/revmodphys.82.1225 es_ES
dc.description.references Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., & Rigol, M. (2011). One dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern Physics, 83(4), 1405-1466. doi:10.1103/revmodphys.83.1405 es_ES
dc.description.references Guan, X.-W., Batchelor, M. T., & Lee, C. (2013). Fermi gases in one dimension: From Bethe ansatz to experiments. Reviews of Modern Physics, 85(4), 1633-1691. doi:10.1103/revmodphys.85.1633 es_ES
dc.description.references Zinner, N. T. (2016). Exploring the few- to many-body crossover using cold atoms in one dimension. EPJ Web of Conferences, 113, 01002. doi:10.1051/epjconf/201611301002 es_ES
dc.description.references Braaten, E., & Hammer, H.-W. (2006). Universality in few-body systems with large scattering length. Physics Reports, 428(5-6), 259-390. doi:10.1016/j.physrep.2006.03.001 es_ES
dc.description.references Naidon, P., & Endo, S. (2017). Efimov physics: a review. Reports on Progress in Physics, 80(5), 056001. doi:10.1088/1361-6633/aa50e8 es_ES
dc.description.references Polkovnikov, A., Sengupta, K., Silva, A., & Vengalattore, M. (2011). Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics, 83(3), 863-883. doi:10.1103/revmodphys.83.863 es_ES
dc.description.references Eisert, J., Friesdorf, M., & Gogolin, C. (2015). Quantum many-body systems out of equilibrium. Nature Physics, 11(2), 124-130. doi:10.1038/nphys3215 es_ES
dc.description.references Busch, T., Englert, B.-G., Rzażewski, K., & Wilkens, M. (1998). Foundations of Physics, 28(4), 549-559. doi:10.1023/a:1018705520999 es_ES
dc.description.references WEI, B.-B. (2009). TWO ONE-DIMENSIONAL INTERACTING PARTICLES IN A HARMONIC TRAP. International Journal of Modern Physics B, 23(18), 3709-3715. doi:10.1142/s0217979209053345 es_ES
dc.description.references Olshanii, M. (1998). Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Physical Review Letters, 81(5), 938-941. doi:10.1103/physrevlett.81.938 es_ES
dc.description.references Idziaszek, Z., & Calarco, T. (2006). Analytical solutions for the dynamics of two trapped interacting ultracold atoms. Physical Review A, 74(2). doi:10.1103/physreva.74.022712 es_ES
dc.description.references Sowiński, T., Brewczyk, M., Gajda, M., & Rzążewski, K. (2010). Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap. Physical Review A, 82(5). doi:10.1103/physreva.82.053631 es_ES
dc.description.references Ebert, M., Volosniev, A., & Hammer, H.-W. (2016). Two cold atoms in a time-dependent harmonic trap in one dimension. Annalen der Physik, 528(9-10), 693-704. doi:10.1002/andp.201500365 es_ES
dc.description.references Budewig, L., Mistakidis, S. I., & Schmelcher, P. (2019). Quench dynamics of two one-dimensional harmonically trapped bosons bridging attraction and repulsion. Molecular Physics, 117(15-16), 2043-2057. doi:10.1080/00268976.2019.1575995 es_ES
dc.description.references Sala, S., Zürn, G., Lompe, T., Wenz, A. N., Murmann, S., Serwane, F., … Saenz, A. (2013). Coherent Molecule Formation in Anharmonic Potentials Near Confinement-Induced Resonances. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.203202 es_ES
dc.description.references Moshinsky, M. (1968). How Good is the Hartree-Fock Approximation. American Journal of Physics, 36(1), 52-53. doi:10.1119/1.1974410 es_ES
dc.description.references Bialynicki-Birula, I. (1985). Exact solutions of nonrelativistic classical and quantum field theory with harmonic forces. Letters in Mathematical Physics, 10(2-3), 189-194. doi:10.1007/bf00398157 es_ES
dc.description.references Załuska-Kotur, M. A., Gajda, M., Orłowski, A., & Mostowski, J. (2000). Soluble model of many interacting quantum particles in a trap. Physical Review A, 61(3). doi:10.1103/physreva.61.033613 es_ES
dc.description.references Ko, Y., & Kim, K. S. (2012). Lifetime of a Nuclear Excited State in Cascade Decay. Few-Body Systems, 54(1-4), 437-440. doi:10.1007/s00601-012-0408-0 es_ES
dc.description.references Klaiman, S., Streltsov, A. I., & Alon, O. E. (2017). Solvable model of a trapped mixture of Bose–Einstein condensates. Chemical Physics, 482, 362-373. doi:10.1016/j.chemphys.2016.07.011 es_ES
dc.description.references Idziaszek, Z., & Calarco, T. (2005). Two atoms in an anisotropic harmonic trap. Physical Review A, 71(5). doi:10.1103/physreva.71.050701 es_ES
dc.description.references Scoquart, T., Seaward, J., Jackson, S. G., & Olshanii, M. (2016). Exactly solvable quantum few-body systems associated with the symmetries of the three-dimensional and four-dimensional icosahedra. SciPost Physics, 1(1). doi:10.21468/scipostphys.1.1.005 es_ES
dc.description.references Olshanii, M., Scoquart, T., Yampolsky, D., Dunjko, V., & Jackson, S. G. (2018). Creating entanglement using integrals of motion. Physical Review A, 97(1). doi:10.1103/physreva.97.013630 es_ES
dc.description.references Gao, B. (1998). Solutions of the Schrödinger equation for an attractive1/r6potential. Physical Review A, 58(3), 1728-1734. doi:10.1103/physreva.58.1728 es_ES
dc.description.references Gao, B. (1999). Repulsive1/r3interaction. Physical Review A, 59(4), 2778-2786. doi:10.1103/physreva.59.2778 es_ES
dc.description.references Kościk, P., & Sowiński, T. (2018). Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions. Scientific Reports, 8(1). doi:10.1038/s41598-017-18505-5 es_ES
dc.description.references Kościk, P., & Sowiński, T. (2019). Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap. Scientific Reports, 9(1). doi:10.1038/s41598-019-48442-4 es_ES
dc.description.references Lieb, E. H., & Liniger, W. (1963). Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Physical Review, 130(4), 1605-1616. doi:10.1103/physrev.130.1605 es_ES
dc.description.references Lieb, E. H. (1963). Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Physical Review, 130(4), 1616-1624. doi:10.1103/physrev.130.1616 es_ES
dc.description.references Calogero, F. (1971). Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 12(3), 419-436. doi:10.1063/1.1665604 es_ES
dc.description.references Sutherland, B. (1971). Quantum Many‐Body Problem in One Dimension: Ground State. Journal of Mathematical Physics, 12(2), 246-250. doi:10.1063/1.1665584 es_ES
dc.description.references Pittman, S. M., Beau, M., Olshanii, M., & del Campo, A. (2017). Truncated Calogero-Sutherland models. Physical Review B, 95(20). doi:10.1103/physrevb.95.205135 es_ES
dc.description.references Marchukov, O. V., & Fischer, U. R. (2019). Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap. Annals of Physics, 405, 274-288. doi:10.1016/j.aop.2019.03.023 es_ES
dc.description.references Astrakharchik, G. E., Blume, D., Giorgini, S., & Granger, B. E. (2004). Quasi-One-Dimensional Bose Gases with a Large Scattering Length. Physical Review Letters, 92(3). doi:10.1103/physrevlett.92.030402 es_ES
dc.description.references Astrakharchik, G. E., Boronat, J., Casulleras, J., & Giorgini, S. (2005). Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases. Physical Review Letters, 95(19). doi:10.1103/physrevlett.95.190407 es_ES
dc.description.references Batchelor, M. T., Bortz, M., Guan, X. W., & Oelkers, N. (2005). Evidence for the super Tonks–Girardeau gas. Journal of Statistical Mechanics: Theory and Experiment, 2005(10), L10001-L10001. doi:10.1088/1742-5468/2005/10/l10001 es_ES
dc.description.references Haller, E., Gustavsson, M., Mark, M. J., Danzl, J. G., Hart, R., Pupillo, G., & Nagerl, H.-C. (2009). Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science, 325(5945), 1224-1227. doi:10.1126/science.1175850 es_ES
dc.description.references Cazalilla, M. A., & Ho, A. F. (2003). Instabilities in Binary Mixtures of One-Dimensional Quantum Degenerate Gases. Physical Review Letters, 91(15). doi:10.1103/physrevlett.91.150403 es_ES
dc.description.references Tempfli, E., Zöllner, S., & Schmelcher, P. (2009). Binding between two-component bosons in one dimension. New Journal of Physics, 11(7), 073015. doi:10.1088/1367-2630/11/7/073015 es_ES
dc.description.references Petrov, D. S. (2015). Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Physical Review Letters, 115(15). doi:10.1103/physrevlett.115.155302 es_ES
dc.description.references Zin, P., Pylak, M., Wasak, T., Gajda, M., & Idziaszek, Z. (2018). Quantum Bose-Bose droplets at a dimensional crossover. Physical Review A, 98(5). doi:10.1103/physreva.98.051603 es_ES
dc.description.references Chiquillo, E. (2018). Equation of state of the one- and three-dimensional Bose-Bose gases. Physical Review A, 97(6). doi:10.1103/physreva.97.063605 es_ES
dc.description.references Cabrera, C. R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., & Tarruell, L. (2017). Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science, 359(6373), 301-304. doi:10.1126/science.aao5686 es_ES
dc.description.references Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., … Fattori, M. (2018). Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Physical Review Letters, 120(23). doi:10.1103/physrevlett.120.235301 es_ES
dc.description.references Cheiney, P., Cabrera, C. R., Sanz, J., Naylor, B., Tanzi, L., & Tarruell, L. (2018). Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.135301 es_ES
dc.description.references Nishida, Y. (2018). Universal bound states of one-dimensional bosons with two- and three-body attractions. Physical Review A, 97(6). doi:10.1103/physreva.97.061603 es_ES
dc.description.references Pricoupenko, A., & Petrov, D. S. (2018). Dimer-dimer zero crossing and dilute dimerized liquid in a one-dimensional mixture. Physical Review A, 97(6). doi:10.1103/physreva.97.063616 es_ES
dc.description.references Cikojević, V., Markić, L. V., Astrakharchik, G. E., & Boronat, J. (2019). Universality in ultradilute liquid Bose-Bose mixtures. Physical Review A, 99(2). doi:10.1103/physreva.99.023618 es_ES
dc.description.references Parisi, L., Astrakharchik, G. E., & Giorgini, S. (2019). Liquid State of One-Dimensional Bose Mixtures: A Quantum Monte Carlo Study. Physical Review Letters, 122(10). doi:10.1103/physrevlett.122.105302 es_ES
dc.description.references Guijarro, G., Pricoupenko, A., Astrakharchik, G. E., Boronat, J., & Petrov, D. S. (2018). One-dimensional three-boson problem with two- and three-body interactions. Physical Review A, 97(6). doi:10.1103/physreva.97.061605 es_ES
dc.description.references Tiesinga, E., & Johnson, P. R. (2011). Collapse and revival dynamics of number-squeezed superfluids of ultracold atoms in optical lattices. Physical Review A, 83(6). doi:10.1103/physreva.83.063609 es_ES
dc.description.references Silva-Valencia, J., & Souza, A. M. C. (2011). First Mott lobe of bosons with local two- and three-body interactions. Physical Review A, 84(6). doi:10.1103/physreva.84.065601 es_ES
dc.description.references Sowiński, T. (2012). Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions. Physical Review A, 85(6). doi:10.1103/physreva.85.065601 es_ES
dc.description.references Hincapie-F, A. F., Franco, R., & Silva-Valencia, J. (2016). Mott lobes of theS=1Bose-Hubbard model with three-body interactions. Physical Review A, 94(3). doi:10.1103/physreva.94.033623 es_ES
dc.description.references Dobrzyniecki, J., Li, X., Nielsen, A. E. B., & Sowiński, T. (2018). Effective three-body interactions for bosons in a double-well confinement. Physical Review A, 97(1). doi:10.1103/physreva.97.013609 es_ES
dc.description.references Barranco, M., Guardiola, R., Hernández, S., Mayol, R., Navarro, J., & Pi, M. (2006). Helium Nanodroplets: An Overview. Journal of Low Temperature Physics, 142(1-2), 1-81. doi:10.1007/s10909-005-9267-0 es_ES
dc.description.references Ho, T.-L., & Shenoy, V. B. (1996). Binary Mixtures of Bose Condensates of Alkali Atoms. Physical Review Letters, 77(16), 3276-3279. doi:10.1103/physrevlett.77.3276 es_ES
dc.description.references Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A., & Wieman, C. E. (1997). Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Physical Review Letters, 78(4), 586-589. doi:10.1103/physrevlett.78.586 es_ES
dc.description.references Esry, B. D., Greene, C. H., Burke, Jr., J. P., & Bohn, J. L. (1997). Hartree-Fock Theory for Double Condensates. Physical Review Letters, 78(19), 3594-3597. doi:10.1103/physrevlett.78.3594 es_ES
dc.description.references Busch, T., Cirac, J. I., Pérez-García, V. M., & Zoller, P. (1997). Stability and collective excitations of a two-component Bose-Einstein condensed gas: A moment approach. Physical Review A, 56(4), 2978-2983. doi:10.1103/physreva.56.2978 es_ES
dc.description.references Ao, P., & Chui, S. T. (1998). Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases. Physical Review A, 58(6), 4836-4840. doi:10.1103/physreva.58.4836 es_ES
dc.description.references Pu, H., & Bigelow, N. P. (1998). Properties of Two-Species Bose Condensates. Physical Review Letters, 80(6), 1130-1133. doi:10.1103/physrevlett.80.1130 es_ES
dc.description.references Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., & Cornell, E. A. (1998). Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Physical Review Letters, 81(8), 1539-1542. doi:10.1103/physrevlett.81.1539 es_ES
dc.description.references Gordon, D., & Savage, C. M. (1998). Excitation spectrum and instability of a two-species Bose-Einstein condensate. Physical Review A, 58(2), 1440-1444. doi:10.1103/physreva.58.1440 es_ES
dc.description.references Goldstein, E. V., & Meystre, P. (1997). Quasiparticle instabilities in multicomponent atomic condensates. Physical Review A, 55(4), 2935-2940. doi:10.1103/physreva.55.2935 es_ES
dc.description.references Öhberg, P., & Stenholm, S. (1998). Hartree-Fock treatment of the two-component Bose-Einstein condensate. Physical Review A, 57(2), 1272-1279. doi:10.1103/physreva.57.1272 es_ES
dc.description.references Roy, A., Gautam, S., & Angom, D. (2014). Goldstone modes and bifurcations in phase-separated binary condensates at finite temperature. Physical Review A, 89(1). doi:10.1103/physreva.89.013617 es_ES
dc.description.references Roy, A., & Angom, D. (2015). Thermal suppression of phase separation in condensate mixtures. Physical Review A, 92(1). doi:10.1103/physreva.92.011601 es_ES
dc.description.references Cikojević, V., Markić, L. V., & Boronat, J. (2018). Harmonically trapped Bose–Bose mixtures: a quantum Monte Carlo study. New Journal of Physics, 20(8), 085002. doi:10.1088/1367-2630/aad6cc es_ES
dc.description.references Girardeau, M. (1960). Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1(6), 516-523. doi:10.1063/1.1703687 es_ES
dc.description.references Tonks, L. (1936). The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres. Physical Review, 50(10), 955-963. doi:10.1103/physrev.50.955 es_ES
dc.description.references Yang, C. N. (1967). Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction. Physical Review Letters, 19(23), 1312-1315. doi:10.1103/physrevlett.19.1312 es_ES
dc.description.references Bethe, H. (1931). Zur Theorie der Metalle. Zeitschrift f�r Physik, 71(3-4), 205-226. doi:10.1007/bf01341708 es_ES
dc.description.references Gaudin, M., & Caux, J.-S. (2009). The Bethe Wavefunction. doi:10.1017/cbo9781107053885 es_ES
dc.description.references Petrov, D. S., Shlyapnikov, G. V., & Walraven, J. T. M. (2000). Regimes of Quantum Degeneracy in Trapped 1D Gases. Physical Review Letters, 85(18), 3745-3749. doi:10.1103/physrevlett.85.3745 es_ES
dc.description.references Dunjko, V., Lorent, V., & Olshanii, M. (2001). Bosons in Cigar-Shaped Traps: Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between. Physical Review Letters, 86(24), 5413-5416. doi:10.1103/physrevlett.86.5413 es_ES
dc.description.references Girardeau, M. D., & Wright, E. M. (2001). Bose-Fermi Variational Theory of the Bose-Einstein Condensate Crossover to the Tonks Gas. Physical Review Letters, 87(21). doi:10.1103/physrevlett.87.210401 es_ES
dc.description.references Blume, D. (2002). Fermionization of a bosonic gas under highly elongated confinement: A diffusion quantum Monte Carlo study. Physical Review A, 66(5). doi:10.1103/physreva.66.053613 es_ES
dc.description.references Gangardt, D. M., & Shlyapnikov, G. V. (2003). Stability and Phase Coherence of Trapped 1D Bose Gases. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.010401 es_ES
dc.description.references Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D., & Shlyapnikov, G. V. (2003). Pair Correlations in a Finite-Temperature 1D Bose Gas. Physical Review Letters, 91(4). doi:10.1103/physrevlett.91.040403 es_ES
dc.description.references Brand, J. (2004). A density-functional approach to fermionization in the 1D Bose gas. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7), S287-S300. doi:10.1088/0953-4075/37/7/073 es_ES
dc.description.references Busch, T., & Huyet, G. (2003). Low-density, one-dimensional quantum gases in a split trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 36(12), 2553-2562. doi:10.1088/0953-4075/36/12/313 es_ES
dc.description.references Murphy, D. S., & McCann, J. F. (2008). Low-energy excitations of a boson pair in a double-well trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063413 es_ES
dc.description.references Goold, J., & Busch, T. (2008). Ground-state properties of a Tonks-Girardeau gas in a split trap. Physical Review A, 77(6). doi:10.1103/physreva.77.063601 es_ES
dc.description.references Yin, X., Hao, Y., Chen, S., & Zhang, Y. (2008). Ground-state properties of a few-boson system in a one-dimensional hard-wall split potential. Physical Review A, 78(1). doi:10.1103/physreva.78.013604 es_ES
dc.description.references Goold, J., Krych, M., Idziaszek, Z., Fogarty, T., & Busch, T. (2010). An eccentrically perturbed Tonks–Girardeau gas. New Journal of Physics, 12(9), 093041. doi:10.1088/1367-2630/12/9/093041 es_ES
dc.description.references Alon, O. E., & Cederbaum, L. S. (2005). Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Physical Review Letters, 95(14). doi:10.1103/physrevlett.95.140402 es_ES
dc.description.references Chen, S., Cao, J., & Gu, S.-J. (2009). Two-component interacting Tonks-Girardeau gas in a one-dimensional optical lattice. EPL (Europhysics Letters), 85(6), 60004. doi:10.1209/0295-5075/85/60004 es_ES
dc.description.references Batchelor, M. T., Guan, X. W., Oelkers, N., & Lee, C. (2005). The 1D interacting Bose gas in a hard wall box. Journal of Physics A: Mathematical and General, 38(36), 7787-7806. doi:10.1088/0305-4470/38/36/001 es_ES
dc.description.references Hao, Y., Zhang, Y., Liang, J. Q., & Chen, S. (2006). Ground-state properties of one-dimensional ultracold Bose gases in a hard-wall trap. Physical Review A, 73(6). doi:10.1103/physreva.73.063617 es_ES
dc.description.references Hao, Y., Zhang, Y., Guan, X.-W., & Chen, S. (2009). Ground-state properties of interacting two-component Bose gases in a hard-wall trap. Physical Review A, 79(3). doi:10.1103/physreva.79.033607 es_ES
dc.description.references Olshanii, M., & Jackson, S. G. (2015). An exactly solvable quantum four-body problem associated with the symmetries of an octacube. New Journal of Physics, 17(10), 105005. doi:10.1088/1367-2630/17/10/105005 es_ES
dc.description.references Sakmann, K., Streltsov, A. I., Alon, O. E., & Cederbaum, L. S. (2005). Exact ground state of finite Bose-Einstein condensates on a ring. Physical Review A, 72(3). doi:10.1103/physreva.72.033613 es_ES
dc.description.references Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Ultracold few-boson systems in a double-well trap. Physical Review A, 74(5). doi:10.1103/physreva.74.053612 es_ES
dc.description.references Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Excitations of few-boson systems in one-dimensional harmonic and double wells. Physical Review A, 75(4). doi:10.1103/physreva.75.043608 es_ES
dc.description.references Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Few-Boson Dynamics in Double Wells: From Single-Atom to Correlated Pair Tunneling. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.040401 es_ES
dc.description.references Chatterjee, B., Brouzos, I., Cao, L., & Schmelcher, P. (2012). Few-boson tunneling dynamics of strongly correlated binary mixtures in a double well. Physical Review A, 85(1). doi:10.1103/physreva.85.013611 es_ES
dc.description.references Dobrzyniecki, J., & Sowiński, T. (2016). Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential. The European Physical Journal D, 70(4). doi:10.1140/epjd/e2016-70016-x es_ES
dc.description.references Dobrzyniecki, J., & Sowiński, T. (2018). Effective two-mode description of a few ultra-cold bosons in a double-well potential. Physics Letters A, 382(6), 394-399. doi:10.1016/j.physleta.2017.12.027 es_ES
dc.description.references Okopińska, A., & Kościk, P. (2009). Two-Boson Correlations in Various One-Dimensional Traps. Few-Body Systems, 45(2-4), 223-226. doi:10.1007/s00601-009-0031-x es_ES
dc.description.references García-March, M. A., Yuste, A., Juliá-Díaz, B., & Polls, A. (2015). Mesoscopic superpositions of Tonks-Girardeau states and the Bose-Fermi mapping. Physical Review A, 92(3). doi:10.1103/physreva.92.033621 es_ES
dc.description.references Harshman, N. L. (2017). Identical Wells, Symmetry Breaking, and the Near-Unitary Limit. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1214-5 es_ES
dc.description.references Harshman, N. L. (2017). Infinite barriers and symmetries for a few trapped particles in one dimension. Physical Review A, 95(5). doi:10.1103/physreva.95.053616 es_ES
dc.description.references Matthies, C., Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2007). Quantum dynamics of two bosons in an anharmonic trap: Collective versus internal excitations. Physical Review A, 76(2). doi:10.1103/physreva.76.023602 es_ES
dc.description.references Girardeau, M. D., Wright, E. M., & Triscari, J. M. (2001). Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap. Physical Review A, 63(3). doi:10.1103/physreva.63.033601 es_ES
dc.description.references Lenard, A. (1964). Momentum Distribution in the Ground State of the One‐Dimensional System of Impenetrable Bosons. Journal of Mathematical Physics, 5(7), 930-943. doi:10.1063/1.1704196 es_ES
dc.description.references Lenard, A. (1966). One‐Dimensional Impenetrable Bosons in Thermal Equilibrium. Journal of Mathematical Physics, 7(7), 1268-1272. doi:10.1063/1.1705029 es_ES
dc.description.references Vaidya, H. G., & Tracy, C. A. (1979). One-Particle Reduced Density Matrix of Impenetrable Bosons in One Dimension at Zero Temperature. Physical Review Letters, 42(1), 3-6. doi:10.1103/physrevlett.42.3 es_ES
dc.description.references Forrester, P. J., Frankel, N. E., Garoni, T. M., & Witte, N. S. (2003). Finite one-dimensional impenetrable Bose systems: Occupation numbers. Physical Review A, 67(4). doi:10.1103/physreva.67.043607 es_ES
dc.description.references Brun, Y., & Dubail, J. (2017). One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance. SciPost Physics, 2(2). doi:10.21468/scipostphys.2.2.012 es_ES
dc.description.references Deuretzbacher, F., Bongs, K., Sengstock, K., & Pfannkuche, D. (2007). Evolution from a Bose-Einstein condensate to a Tonks-Girardeau gas: An exact diagonalization study. Physical Review A, 75(1). doi:10.1103/physreva.75.013614 es_ES
dc.description.references Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2006). Correlations in ultracold trapped few-boson systems: Transition from condensation to fermionization. Physical Review A, 74(6). doi:10.1103/physreva.74.063611 es_ES
dc.description.references Ernst, T., Hallwood, D. W., Gulliksen, J., Meyer, H.-D., & Brand, J. (2011). Simulating strongly correlated multiparticle systems in a truncated Hilbert space. Physical Review A, 84(2). doi:10.1103/physreva.84.023623 es_ES
dc.description.references Brouzos, I., & Schmelcher, P. (2012). Construction of Analytical Many-Body Wave Functions for Correlated Bosons in a Harmonic Trap. Physical Review Letters, 108(4). doi:10.1103/physrevlett.108.045301 es_ES
dc.description.references Wilson, B., Foerster, A., Kuhn, C. C. N., Roditi, I., & Rubeni, D. (2014). A geometric wave function for a few interacting bosons in a harmonic trap. Physics Letters A, 378(16-17), 1065-1070. doi:10.1016/j.physleta.2014.02.009 es_ES
dc.description.references Kościk, P. (2011). Quantum Correlations of a Few Bosons within a Harmonic Trap. Few-Body Systems, 52(1-2), 49-52. doi:10.1007/s00601-011-0239-4 es_ES
dc.description.references Christensson, J., Forssén, C., Åberg, S., & Reimann, S. M. (2009). Effective-interaction approach to the many-boson problem. Physical Review A, 79(1). doi:10.1103/physreva.79.012707 es_ES
dc.description.references Kościk, P. (2018). Optimized configuration interaction approach for trapped multiparticle systems interacting via contact forces. Physics Letters A, 382(36), 2561-2564. doi:10.1016/j.physleta.2018.06.025 es_ES
dc.description.references Jeszenszki, P., Luo, H., Alavi, A., & Brand, J. (2018). Accelerating the convergence of exact diagonalization with the transcorrelated method: Quantum gas in one dimension with contact interactions. Physical Review A, 98(5). doi:10.1103/physreva.98.053627 es_ES
dc.description.references Friedel, J. (1952). XIV. The distribution of electrons round impurities in monovalent metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(337), 153-189. doi:10.1080/14786440208561086 es_ES
dc.description.references Friedel, J. (1958). Metallic alloys. Il Nuovo Cimento, 7(S2), 287-311. doi:10.1007/bf02751483 es_ES
dc.description.references Minguzzi, A., Vignolo, P., & Tosi, M. P. (2002). High-momentum tail in the Tonks gas under harmonic confinement. Physics Letters A, 294(3-4), 222-226. doi:10.1016/s0375-9601(02)00042-7 es_ES
dc.description.references Lapeyre, G. J., Girardeau, M. D., & Wright, E. M. (2002). Momentum distribution for a one-dimensional trapped gas of hard-core bosons. Physical Review A, 66(2). doi:10.1103/physreva.66.023606 es_ES
dc.description.references Gudyma, A. I., Astrakharchik, G. E., & Zvonarev, M. B. (2015). Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas. Physical Review A, 92(2). doi:10.1103/physreva.92.021601 es_ES
dc.description.references Garcia-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Busch, T., Boronat, J., & Polls, A. (2013). Sharp crossover from composite fermionization to phase separation in microscopic mixtures of ultracold bosons. Physical Review A, 88(6). doi:10.1103/physreva.88.063604 es_ES
dc.description.references Zöllner, S., Meyer, H.-D., & Schmelcher, P. (2008). Composite fermionization of one-dimensional Bose-Bose mixtures. Physical Review A, 78(1). doi:10.1103/physreva.78.013629 es_ES
dc.description.references Hao, Y. J., & Chen, S. (2008). Ground-state properties of interacting two-component Bose gases in a one-dimensional harmonic trap. The European Physical Journal D, 51(2), 261-266. doi:10.1140/epjd/e2008-00266-0 es_ES
dc.description.references Pyzh, M., Krönke, S., Weitenberg, C., & Schmelcher, P. (2018). Spectral properties and breathing dynamics of a few-body Bose–Bose mixture in a 1D harmonic trap. New Journal of Physics, 20(1), 015006. doi:10.1088/1367-2630/aa9cb2 es_ES
dc.description.references Li, Y.-Q., Gu, S.-J., Ying, Z.-J., & Eckern, U. (2003). Exact results of the ground state and excitation properties of a two-component interacting Bose system. Europhysics Letters (EPL), 61(3), 368-374. doi:10.1209/epl/i2003-00183-2 es_ES
dc.description.references Girardeau, M. D., & Minguzzi, A. (2007). Soluble Models of Strongly Interacting Ultracold Gas Mixtures in Tight Waveguides. Physical Review Letters, 99(23). doi:10.1103/physrevlett.99.230402 es_ES
dc.description.references Deuretzbacher, F., Fredenhagen, K., Becker, D., Bongs, K., Sengstock, K., & Pfannkuche, D. (2008). Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases. Physical Review Letters, 100(16). doi:10.1103/physrevlett.100.160405 es_ES
dc.description.references Fang, B., Vignolo, P., Gattobigio, M., Miniatura, C., & Minguzzi, A. (2011). Exact solution for the degenerate ground-state manifold of a strongly interacting one-dimensional Bose-Fermi mixture. Physical Review A, 84(2). doi:10.1103/physreva.84.023626 es_ES
dc.description.references GaudinN, M., & Derrida, B. (1975). Solution exacte d’un problème modèle à trois corps. Etat lié. Journal de Physique, 36(12), 1183-1197. doi:10.1051/jphys:0197500360120118300 es_ES
dc.description.references Zinner, N. T., Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Valiente, M. (2014). Fractional energy states of strongly interacting bosons in one dimension. EPL (Europhysics Letters), 107(6), 60003. doi:10.1209/0295-5075/107/60003 es_ES
dc.description.references García-March, M.-Á., Ferrando, A., Zacarés, M., Vijande, J., & Carr, L. D. (2009). Angular pseudomomentum theory for the generalized nonlinear Schrödinger equation in discrete rotational symmetry media. Physica D: Nonlinear Phenomena, 238(15), 1432-1438. doi:10.1016/j.physd.2008.12.007 es_ES
dc.description.references García-March, M.-Á., Ferrando, A., Zacarés, M., Sahu, S., & Ceballos-Herrera, D. E. (2009). Symmetry, winding number, and topological charge of vortex solitons in discrete-symmetry media. Physical Review A, 79(5). doi:10.1103/physreva.79.053820 es_ES
dc.description.references García-March, M. A., Juliá-Díaz, B., Astrakharchik, G. E., Boronat, J., & Polls, A. (2014). Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Physical Review A, 90(6). doi:10.1103/physreva.90.063605 es_ES
dc.description.references Dehkharghani, A., Volosniev, A., Lindgren, J., Rotureau, J., Forssén, C., Fedorov, D., … Zinner, N. (2015). Quantum magnetism in strongly interacting one-dimensional spinor Bose systems. Scientific Reports, 5(1). doi:10.1038/srep10675 es_ES
dc.description.references Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2016). Impenetrable mass-imbalanced particles in one-dimensional harmonic traps. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(8), 085301. doi:10.1088/0953-4075/49/8/085301 es_ES
dc.description.references Hao, Y., & Chen, S. (2009). Density-functional theory of two-component Bose gases in one-dimensional harmonic traps. Physical Review A, 80(4). doi:10.1103/physreva.80.043608 es_ES
dc.description.references Garcia-March, M. A., & Busch, T. (2013). Quantum gas mixtures in different correlation regimes. Physical Review A, 87(6). doi:10.1103/physreva.87.063633 es_ES
dc.description.references Kolomeisky, E. B., Newman, T. J., Straley, J. P., & Qi, X. (2000). Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation. Physical Review Letters, 85(6), 1146-1149. doi:10.1103/physrevlett.85.1146 es_ES
dc.description.references Tanatar, B., & Erkan, K. (2000). Strongly interacting one-dimensional Bose-Einstein condensates in harmonic traps. Physical Review A, 62(5). doi:10.1103/physreva.62.053601 es_ES
dc.description.references Girardeau, M. D., & Wright, E. M. (2000). Breakdown of Time-Dependent Mean-Field Theory for a One-Dimensional Condensate of Impenetrable Bosons. Physical Review Letters, 84(23), 5239-5242. doi:10.1103/physrevlett.84.5239 es_ES
dc.description.references Barfknecht, R. E., Dehkharghani, A. S., Foerster, A., & Zinner, N. T. (2016). Correlation properties of a three-body bosonic mixture in a harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(13), 135301. doi:10.1088/0953-4075/49/13/135301 es_ES
dc.description.references Volosniev, A. G. (2017). Strongly Interacting One-dimensional Systems with Small Mass Imbalance. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1227-0 es_ES
dc.description.references Dehkharghani, A. S., Volosniev, A. G., & Zinner, N. T. (2015). Quantum impurity in a one-dimensional trapped Bose gas. Physical Review A, 92(3). doi:10.1103/physreva.92.031601 es_ES
dc.description.references Mehta, N. P. (2014). Born-Oppenheimer study of two-component few-particle systems under one-dimensional confinement. Physical Review A, 89(5). doi:10.1103/physreva.89.052706 es_ES
dc.description.references Catani, J., Lamporesi, G., Naik, D., Gring, M., Inguscio, M., Minardi, F., … Giamarchi, T. (2012). Quantum dynamics of impurities in a one-dimensional Bose gas. Physical Review A, 85(2). doi:10.1103/physreva.85.023623 es_ES
dc.description.references Will, S., Best, T., Braun, S., Schneider, U., & Bloch, I. (2011). Coherent Interaction of a Single Fermion with a Small Bosonic Field. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115305 es_ES
dc.description.references Grusdt, F., Astrakharchik, G. E., & Demler, E. (2017). Bose polarons in ultracold atoms in one dimension: beyond the Fröhlich paradigm. New Journal of Physics, 19(10), 103035. doi:10.1088/1367-2630/aa8a2e es_ES
dc.description.references Barfknecht, R. E., Foerster, A., & Zinner, N. T. (2018). Emergence of junction dynamics in a strongly interacting Bose mixture. New Journal of Physics, 20(6), 063014. doi:10.1088/1367-2630/aac718 es_ES
dc.description.references Mehta, N. P., & Morehead, C. D. (2015). Few-boson processes in the presence of an attractive impurity under one-dimensional confinement. Physical Review A, 92(4). doi:10.1103/physreva.92.043616 es_ES
dc.description.references Harshman, N. L., Olshanii, M., Dehkharghani, A. S., Volosniev, A. G., Jackson, S. G., & Zinner, N. T. (2017). Integrable Families of Hard-Core Particles with Unequal Masses in a One-Dimensional Harmonic Trap. Physical Review X, 7(4). doi:10.1103/physrevx.7.041001 es_ES
dc.description.references Granger, B. E., & Blume, D. (2004). Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement. Physical Review Letters, 92(13). doi:10.1103/physrevlett.92.133202 es_ES
dc.description.references Girardeau, M. D., & Olshanii, M. (2004). Theory of spinor Fermi and Bose gases in tight atom waveguides. Physical Review A, 70(2). doi:10.1103/physreva.70.023608 es_ES
dc.description.references Yang, L., & Pu, H. (2016). Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations. Physical Review A, 94(3). doi:10.1103/physreva.94.033614 es_ES
dc.description.references Yang, L., & Pu, H. (2017). One-body density matrix and momentum distribution of strongly interacting one-dimensional spinor quantum gases. Physical Review A, 95(5). doi:10.1103/physreva.95.051602 es_ES
dc.description.references Wang, H., & Zhang, Y. (2013). Density-functional theory for the spin-1 bosons in a one-dimensional harmonic trap. Physical Review A, 88(2). doi:10.1103/physreva.88.023626 es_ES
dc.description.references Hao, Y. (2016). The weakening of fermionization of one dimensional spinor Bose gases induced by spin-exchange interaction. The European Physical Journal D, 70(5). doi:10.1140/epjd/e2016-70076-x es_ES
dc.description.references Hao, Y. (2017). Ground state properties of anti-ferromagnetic spinor Bose gases in one dimension. The European Physical Journal D, 71(3). doi:10.1140/epjd/e2017-70483-5 es_ES
dc.description.references Jen, H. H., & Yip, S.-K. (2017). Spin-incoherent Luttinger liquid of one-dimensional spin-1 Tonks-Girardeau Bose gases: Spin-dependent properties. Physical Review A, 95(5). doi:10.1103/physreva.95.053631 es_ES
dc.description.references Gharashi, S. E., Daily, K. M., & Blume, D. (2012). Threes-wave-interacting fermions under anisotropic harmonic confinement: Dimensional crossover of energetics and virial coefficients. Physical Review A, 86(4). doi:10.1103/physreva.86.042702 es_ES
dc.description.references Wille, E., Spiegelhalder, F. M., Kerner, G., Naik, D., Trenkwalder, A., Hendl, G., … Julienne, P. S. (2008). Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties ofLi6andK40. Physical Review Letters, 100(5). doi:10.1103/physrevlett.100.053201 es_ES
dc.description.references Tiecke, T. G., Goosen, M. R., Ludewig, A., Gensemer, S. D., Kraft, S., Kokkelmans, S. J. J. M. F., & Walraven, J. T. M. (2010). Broad Feshbach Resonance in theLi6−K40Mixture. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.053202 es_ES
dc.description.references Guan, X.-W., Batchelor, M. T., & Lee, J.-Y. (2008). Magnetic ordering and quantum statistical effects in strongly repulsive Fermi-Fermi and Bose-Fermi mixtures. Physical Review A, 78(2). doi:10.1103/physreva.78.023621 es_ES
dc.description.references Sowiński, T. (2018). Ground-State Magnetization in Mixtures of a Few Ultra-Cold Fermions in One-Dimensional Traps. Condensed Matter, 3(1), 7. doi:10.3390/condmat3010007 es_ES
dc.description.references Koutentakis, G. M., Mistakidis, S. I., & Schmelcher, P. (2019). Probing ferromagnetic order in few-fermion correlated spin-flip dynamics. New Journal of Physics, 21(5), 053005. doi:10.1088/1367-2630/ab14ba es_ES
dc.description.references Barasiński, A., Leoński, W., & Sowiński, T. (2014). Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices. Journal of the Optical Society of America B, 31(8), 1845. doi:10.1364/josab.31.001845 es_ES
dc.description.references Carvalho, D. W. S., Foerster, A., & Gusmão, M. A. (2015). Ground states of spin-1 bosons in asymmetric double wells. Physical Review A, 91(3). doi:10.1103/physreva.91.033608 es_ES
dc.description.references Harshman, N. L. (2014). Spectroscopy for a few atoms harmonically trapped in one dimension. Physical Review A, 89(3). doi:10.1103/physreva.89.033633 es_ES
dc.description.references Pęcak, D., Gajda, M., & Sowiński, T. (2017). Experimentally Accessible Invariants Encoded in Interparticle Correlations of Harmonically Trapped Ultra-cold Few-Fermion Mixtures. Few-Body Systems, 58(6). doi:10.1007/s00601-017-1321-3 es_ES
dc.description.references Bugnion, P. O., & Conduit, G. J. (2013). Exploring exchange mechanisms with a cold-atom gas. Physical Review A, 88(1). doi:10.1103/physreva.88.013601 es_ES
dc.description.references Sowiński, T., Gajda, M., & Rzażewski, K. (2016). Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential. EPL (Europhysics Letters), 113(5), 56003. doi:10.1209/0295-5075/113/56003 es_ES
dc.description.references Yannouleas, C., Brandt, B. B., & Landman, U. (2016). Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg andt–Jmodels. New Journal of Physics, 18(7), 073018. doi:10.1088/1367-2630/18/7/073018 es_ES
dc.description.references Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2018). Correlated tunneling dynamics of an ultracold Fermi-Fermi mixture confined in a double well. Physical Review A, 98(5). doi:10.1103/physreva.98.053614 es_ES
dc.description.references Erdmann, J., Mistakidis, S. I., & Schmelcher, P. (2019). Phase-separation dynamics induced by an interaction quench of a correlated Fermi-Fermi mixture in a double well. Physical Review A, 99(1). doi:10.1103/physreva.99.013605 es_ES
dc.description.references Barfknecht, R. E., Brouzos, I., & Foerster, A. (2015). Contact and static structure factor for bosonic and fermionic mixtures. Physical Review A, 91(4). doi:10.1103/physreva.91.043640 es_ES
dc.description.references Rontani, M. (2013). Pair tunneling of two atoms out of a trap. Physical Review A, 88(4). doi:10.1103/physreva.88.043633 es_ES
dc.description.references Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., & Hadzibabic, Z. (2013). Bose-Einstein Condensation of Atoms in a Uniform Potential. Physical Review Letters, 110(20). doi:10.1103/physrevlett.110.200406 es_ES
dc.description.references Pęcak, D., & Sowiński, T. (2016). Few strongly interacting ultracold fermions in one-dimensional traps of different shapes. Physical Review A, 94(4). doi:10.1103/physreva.94.042118 es_ES
dc.description.references Pilati, S., Barbiero, L., Fazio, R., & Dell’Anna, L. (2017). One-dimensional repulsive Fermi gas in a tunable periodic potential. Physical Review A, 96(2). doi:10.1103/physreva.96.021601 es_ES
dc.description.references Mathey, L., Altman, E., & Vishwanath, A. (2008). Noise Correlations in One-Dimensional Systems of Ultracold Fermions. Physical Review Letters, 100(24). doi:10.1103/physrevlett.100.240401 es_ES
dc.description.references Mathey, L., Vishwanath, A., & Altman, E. (2009). Noise correlations in low-dimensional systems of ultracold atoms. Physical Review A, 79(1). doi:10.1103/physreva.79.013609 es_ES
dc.description.references Brandt, B. B., Yannouleas, C., & Landman, U. (2017). Two-point momentum correlations of few ultracold quasi-one-dimensional trapped fermions: Diffraction patterns. Physical Review A, 96(5). doi:10.1103/physreva.96.053632 es_ES
dc.description.references Brandt, B. B., Yannouleas, C., & Landman, U. (2018). Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms. Physical Review A, 97(5). doi:10.1103/physreva.97.053601 es_ES
dc.description.references Yannouleas, C., & Landman, U. (2019). Third-order momentum correlation interferometry maps for entangled quantal states of three singly trapped massive ultracold fermions. Physical Review A, 100(2). doi:10.1103/physreva.100.023618 es_ES
dc.description.references Pagano, G., Mancini, M., Cappellini, G., Lombardi, P., Schäfer, F., Hu, H., … Fallani, L. (2014). A one-dimensional liquid of fermions with tunable spin. Nature Physics, 10(3), 198-201. doi:10.1038/nphys2878 es_ES
dc.description.references Guan, X.-W., Ma, Z.-Q., & Wilson, B. (2012). One-dimensional multicomponent fermions withδ-function interaction in strong- and weak-coupling limits:κ-component Fermi gas. Physical Review A, 85(3). doi:10.1103/physreva.85.033633 es_ES
dc.description.references Beverland, M. E., Alagic, G., Martin, M. J., Koller, A. P., Rey, A. M., & Gorshkov, A. V. (2016). Realizing exactly solvableSU(N)magnets with thermal atoms. Physical Review A, 93(5). doi:10.1103/physreva.93.051601 es_ES
dc.description.references Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2016). High-momentum tails as magnetic-structure probes for strongly correlatedSU(κ)fermionic mixtures in one-dimensional traps. Physical Review A, 94(5). doi:10.1103/physreva.94.053614 es_ES
dc.description.references Hoffman, M. D., Loheac, A. C., Porter, W. J., & Drut, J. E. (2017). Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions. Physical Review A, 95(3). doi:10.1103/physreva.95.033602 es_ES
dc.description.references Laird, E. K., Shi, Z.-Y., Parish, M. M., & Levinsen, J. (2017). SU( N ) fermions in a one-dimensional harmonic trap. Physical Review A, 96(3). doi:10.1103/physreva.96.032701 es_ES
dc.description.references Xu, J., Feng, T., & Gu, Q. (2017). Spin dynamics of large-spin fermions in a harmonic trap. Annals of Physics, 379, 175-186. doi:10.1016/j.aop.2017.02.003 es_ES
dc.description.references Decamp, J., Armagnat, P., Fang, B., Albert, M., Minguzzi, A., & Vignolo, P. (2016). Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides. New Journal of Physics, 18(5), 055011. doi:10.1088/1367-2630/18/5/055011 es_ES
dc.description.references Lieb, E., & Mattis, D. (1962). Theory of Ferromagnetism and the Ordering of Electronic Energy Levels. Physical Review, 125(1), 164-172. doi:10.1103/physrev.125.164 es_ES
dc.description.references Pan, L., Liu, Y., Hu, H., Zhang, Y., & Chen, S. (2017). Exact ordering of energy levels for one-dimensional interacting Fermi gases with SU (N) symmetry. Physical Review B, 96(7). doi:10.1103/physrevb.96.075149 es_ES
dc.description.references Cazalilla, M. A., & Rey, A. M. (2014). Ultracold Fermi gases with emergent SU(N) symmetry. Reports on Progress in Physics, 77(12), 124401. doi:10.1088/0034-4885/77/12/124401 es_ES
dc.description.references Girardeau, M. D. (2010). Two super-Tonks-Girardeau states of a trapped one-dimensional spinor Fermi gas. Physical Review A, 82(1). doi:10.1103/physreva.82.011607 es_ES
dc.description.references Guan, Q., Yin, X. Y., Ebrahim Gharashi, S., & Blume, D. (2014). Energy spectrum of a harmonically trapped two-atom system with spin–orbit coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(16), 161001. doi:10.1088/0953-4075/47/16/161001 es_ES
dc.description.references Schillaci, C. D., & Luu, T. C. (2015). Energy spectra of two interacting fermions with spin-orbit coupling in a harmonic trap. Physical Review A, 91(4). doi:10.1103/physreva.91.043606 es_ES
dc.description.references Cui, X., & Ho, T.-L. (2014). Spin-orbit-coupled one-dimensional Fermi gases with infinite repulsion. Physical Review A, 89(1). doi:10.1103/physreva.89.013629 es_ES
dc.description.references Yin, X. Y., Gopalakrishnan, S., & Blume, D. (2014). Harmonically trapped two-atom systems: Interplay of short-ranges-wave interaction and spin-orbit coupling. Physical Review A, 89(3). doi:10.1103/physreva.89.033606 es_ES
dc.description.references Guan, Q., & Blume, D. (2015). Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling. Physical Review A, 92(2). doi:10.1103/physreva.92.023641 es_ES
dc.description.references Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Zinner, N. T., & Valiente, M. (2013). Multicomponent Strongly Interacting Few-Fermion Systems in One Dimension. Few-Body Systems, 55(8-10), 839-842. doi:10.1007/s00601-013-0776-0 es_ES
dc.description.references Kestner, J. P., & Duan, L.-M. (2007). Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap. Physical Review A, 76(3). doi:10.1103/physreva.76.033611 es_ES
dc.description.references D’Amico, P., & Rontani, M. (2014). Three interacting atoms in a one-dimensional trap: a benchmark system for computational approaches. Journal of Physics B: Atomic, Molecular and Optical Physics, 47(6), 065303. doi:10.1088/0953-4075/47/6/065303 es_ES
dc.description.references Loft, N. J. S., Dehkharghani, A. S., Mehta, N. P., Volosniev, A. G., & Zinner, N. T. (2015). A variational approach to repulsively interacting three-fermion systems in a one-dimensional harmonic trap. The European Physical Journal D, 69(3). doi:10.1140/epjd/e2015-50845-9 es_ES
dc.description.references Volosniev, A. G., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Hyperspherical treatment of strongly-interacting few-fermion systems in one dimension. The European Physical Journal Special Topics, 224(3), 585-590. doi:10.1140/epjst/e2015-02390-2 es_ES
dc.description.references McGuire, J. B. (1965). Interacting Fermions in One Dimension. I. Repulsive Potential. Journal of Mathematical Physics, 6(3), 432-439. doi:10.1063/1.1704291 es_ES
dc.description.references McGuire, J. B. (1966). Interacting Fermions in One Dimension. II. Attractive Potential. Journal of Mathematical Physics, 7(1), 123-132. doi:10.1063/1.1704798 es_ES
dc.description.references Astrakharchik, G. E., & Brouzos, I. (2013). Trapped one-dimensional ideal Fermi gas with a single impurity. Physical Review A, 88(2). doi:10.1103/physreva.88.021602 es_ES
dc.description.references Gharashi, S. E., Yin, X. Y., Yan, Y., & Blume, D. (2015). One-dimensional Fermi gas with a single impurity in a harmonic trap: Perturbative description of the upper branch. Physical Review A, 91(1). doi:10.1103/physreva.91.013620 es_ES
dc.description.references Pricoupenko, L., & Castin, Y. (2004). One particle in a box: The simplest model for a Fermi gas in the unitary limit. Physical Review A, 69(5). doi:10.1103/physreva.69.051601 es_ES
dc.description.references Mistakidis, S. I., Katsimiga, G. C., Koutentakis, G. M., & Schmelcher, P. (2019). Repulsive Fermi polarons and their induced interactions in binary mixtures of ultracold atoms. New Journal of Physics, 21(4), 043032. doi:10.1088/1367-2630/ab1045 es_ES
dc.description.references Gharashi, S. E., & Blume, D. (2013). Correlations of the Upper Branch of 1D Harmonically Trapped Two-Component Fermi Gases. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045302 es_ES
dc.description.references Sowiński, T., Grass, T., Dutta, O., & Lewenstein, M. (2013). Few interacting fermions in a one-dimensional harmonic trap. Physical Review A, 88(3). doi:10.1103/physreva.88.033607 es_ES
dc.description.references Bugnion, P. O., & Conduit, G. J. (2013). Ferromagnetic spin correlations in a few-fermion system. Physical Review A, 87(6). doi:10.1103/physreva.87.060502 es_ES
dc.description.references Guan, L., Chen, S., Wang, Y., & Ma, Z.-Q. (2009). Exact Solution for Infinitely Strongly Interacting Fermi Gases in Tight Waveguides. Physical Review Letters, 102(16). doi:10.1103/physrevlett.102.160402 es_ES
dc.description.references Płodzień, M., Demkowicz-Dobrzański, R., & Sowiński, T. (2018). Few-fermion thermometry. Physical Review A, 97(6). doi:10.1103/physreva.97.063619 es_ES
dc.description.references Lindgren, E. J., Rotureau, J., Forssén, C., Volosniev, A. G., & Zinner, N. T. (2014). Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap. New Journal of Physics, 16(6), 063003. doi:10.1088/1367-2630/16/6/063003 es_ES
dc.description.references Carbonell-Coronado, C., Soto, F. D., & Gordillo, M. C. (2016). Ordering in one-dimensional few-fermion clusters with repulsive interactions. New Journal of Physics, 18(2), 025015. doi:10.1088/1367-2630/18/2/025015 es_ES
dc.description.references Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2014). Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases. Physical Review A, 90(1). doi:10.1103/physreva.90.013611 es_ES
dc.description.references Volosniev, A. G., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2014). Strongly interacting confined quantum systems in one dimension. Nature Communications, 5(1). doi:10.1038/ncomms6300 es_ES
dc.description.references Yang, L., Guan, L., & Pu, H. (2015). Strongly interacting quantum gases in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.043634 es_ES
dc.description.references Levinsen, J., Massignan, P., Bruun, G. M., & Parish, M. M. (2015). Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential. Science Advances, 1(6), e1500197. doi:10.1126/sciadv.1500197 es_ES
dc.description.references Marchukov, O. V., Eriksen, E. H., Midtgaard, J. M., Kalaee, A. A. S., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2016). Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results. The European Physical Journal D, 70(2). doi:10.1140/epjd/e2016-60489-x es_ES
dc.description.references Loft, N. J. S., Kristensen, L. B., Thomsen, A. E., Volosniev, A. G., & Zinner, N. T. (2016). CONAN—The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension. Computer Physics Communications, 209, 171-182. doi:10.1016/j.cpc.2016.08.021 es_ES
dc.description.references Deuretzbacher, F., & Santos, L. (2017). Tuning an effective spin chain of three strongly interacting one-dimensional fermions with the transversal confinement. Physical Review A, 96(1). doi:10.1103/physreva.96.013629 es_ES
dc.description.references Volosniev, A. G., Petrosyan, D., Valiente, M., Fedorov, D. V., Jensen, A. S., & Zinner, N. T. (2015). Engineering the dynamics of effective spin-chain models for strongly interacting atomic gases. Physical Review A, 91(2). doi:10.1103/physreva.91.023620 es_ES
dc.description.references Loft, N. J. S., Marchukov, O. V., Petrosyan, D., & Zinner, N. T. (2016). Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer. New Journal of Physics, 18(4), 045011. doi:10.1088/1367-2630/18/4/045011 es_ES
dc.description.references Marchukov, O. V., Volosniev, A. G., Valiente, M., Petrosyan, D., & Zinner, N. T. (2016). Quantum spin transistor with a Heisenberg spin chain. Nature Communications, 7(1). doi:10.1038/ncomms13070 es_ES
dc.description.references Liu, Y., Chen, S., & Zhang, Y. (2017). Spectroscopy and spin dynamics for strongly interacting few-spinor bosons in one-dimensional traps. Physical Review A, 95(4). doi:10.1103/physreva.95.043628 es_ES
dc.description.references Matveev, K. A., & Furusaki, A. (2008). Spectral Functions of Strongly Interacting Isospin-12Bosons in One Dimension. Physical Review Letters, 101(17). doi:10.1103/physrevlett.101.170403 es_ES
dc.description.references Massignan, P., Levinsen, J., & Parish, M. M. (2015). Magnetism in Strongly Interacting One-Dimensional Quantum Mixtures. Physical Review Letters, 115(24). doi:10.1103/physrevlett.115.247202 es_ES
dc.description.references Yang, L., & Cui, X. (2016). Effective spin-chain model for strongly interacting one-dimensional atomic gases with an arbitrary spin. Physical Review A, 93(1). doi:10.1103/physreva.93.013617 es_ES
dc.description.references Söffing, S. A., Bortz, M., & Eggert, S. (2011). Density profile of interacting fermions in a one-dimensional optical trap. Physical Review A, 84(2). doi:10.1103/physreva.84.021602 es_ES
dc.description.references Rotureau, J. (2013). Interaction for the trapped fermi gas from a unitary transformation of the exact two-body spectrum. The European Physical Journal D, 67(7). doi:10.1140/epjd/e2013-40156-8 es_ES
dc.description.references Haugset, T., & Haugerud, H. (1998). Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions. Physical Review A, 57(5), 3809-3817. doi:10.1103/physreva.57.3809 es_ES
dc.description.references Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Massignan, P., … Moszynski, R. (2015). Many interacting fermions in a one-dimensional harmonic trap: a quantum-chemical treatment. New Journal of Physics, 17(11), 115001. doi:10.1088/1367-2630/17/11/115001 es_ES
dc.description.references Grining, T., Tomza, M., Lesiuk, M., Przybytek, M., Musiał, M., Moszynski, R., … Massignan, P. (2015). Crossover between few and many fermions in a harmonic trap. Physical Review A, 92(6). doi:10.1103/physreva.92.061601 es_ES
dc.description.references Kohn, W. (1999). Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 71(5), 1253-1266. doi:10.1103/revmodphys.71.1253 es_ES
dc.description.references Xianlong, G., Polini, M., Asgari, R., & Tosi, M. P. (2006). Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps. Physical Review A, 73(3). doi:10.1103/physreva.73.033609 es_ES
dc.description.references Rammelmüller, L., Porter, W. J., Drut, J. E., & Braun, J. (2017). Surmounting the sign problem in nonrelativistic calculations: A case study with mass-imbalanced fermions. Physical Review D, 96(9). doi:10.1103/physrevd.96.094506 es_ES
dc.description.references Rammelmüller, L., Drut, J. E., & Braun, J. (2018). A complex Langevin approach to ultracold fermions. Journal of Physics: Conference Series, 1041, 012006. doi:10.1088/1742-6596/1041/1/012006 es_ES
dc.description.references Andersen, M. E. S., Dehkharghani, A. S., Volosniev, A. G., Lindgren, E. J., & Zinner, N. T. (2016). An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems. Scientific Reports, 6(1). doi:10.1038/srep28362 es_ES
dc.description.references Pęcak, D., Dehkharghani, A. S., Zinner, N. T., & Sowiński, T. (2017). Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach. Physical Review A, 95(5). doi:10.1103/physreva.95.053632 es_ES
dc.description.references Bellotti, F. F., Dehkharghani, A. S., & Zinner, N. T. (2017). Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps. The European Physical Journal D, 71(2). doi:10.1140/epjd/e2017-70650-8 es_ES
dc.description.references Rubeni, D., Foerster, A., & Roditi, I. (2012). Two interacting fermions in a one-dimensional harmonic trap: Matching the Bethe ansatz and variational approaches. Physical Review A, 86(4). doi:10.1103/physreva.86.043619 es_ES
dc.description.references Jastrow, R. (1955). Many-Body Problem with Strong Forces. Physical Review, 98(5), 1479-1484. doi:10.1103/physrev.98.1479 es_ES
dc.description.references Brouzos, I., & Schmelcher, P. (2013). Two-component few-fermion mixtures in a one-dimensional trap: Numerical versus analytical approach. Physical Review A, 87(2). doi:10.1103/physreva.87.023605 es_ES
dc.description.references Kościk, P., Płodzień, M., & Sowiński, T. (2018). Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement. EPL (Europhysics Letters), 123(3), 36001. doi:10.1209/0295-5075/123/36001 es_ES
dc.description.references Cooper, L. N. (1956). Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104(4), 1189-1190. doi:10.1103/physrev.104.1189 es_ES
dc.description.references Liu, X.-J., Hu, H., & Drummond, P. D. (2010). Three attractively interacting fermions in a harmonic trap: Exact solution, ferromagnetism, and high-temperature thermodynamics. Physical Review A, 82(2). doi:10.1103/physreva.82.023619 es_ES
dc.description.references Sowiński, T., Gajda, M., & Rzażewski, K. (2015). Pairing in a system of a few attractive fermions in a harmonic trap. EPL (Europhysics Letters), 109(2), 26005. doi:10.1209/0295-5075/109/26005 es_ES
dc.description.references D’Amico, P., & Rontani, M. (2015). Pairing of a few Fermi atoms in one dimension. Physical Review A, 91(4). doi:10.1103/physreva.91.043610 es_ES
dc.description.references Hofmann, J., Lobos, A. M., & Galitski, V. (2016). Parity effect in a mesoscopic Fermi gas. Physical Review A, 93(6). doi:10.1103/physreva.93.061602 es_ES
dc.description.references Matveev, K. A., & Larkin, A. I. (1997). Parity Effect in Ground State Energies of Ultrasmall Superconducting Grains. Physical Review Letters, 78(19), 3749-3752. doi:10.1103/physrevlett.78.3749 es_ES
dc.description.references Sowiński, T. (2015). Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap. Few-Body Systems, 56(10), 659-663. doi:10.1007/s00601-015-1017-5 es_ES
dc.description.references Bugnion, P. O., Lofthouse, J. A., & Conduit, G. J. (2013). Inhomogeneous State of Few-Fermion Superfluids. Physical Review Letters, 111(4). doi:10.1103/physrevlett.111.045301 es_ES
dc.description.references Berger, C. E., Anderson, E. R., & Drut, J. E. (2015). Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice Monte Carlo calculations. Physical Review A, 91(5). doi:10.1103/physreva.91.053618 es_ES
dc.description.references McKenney, J. R., Shill, C. R., Porter, W. J., & Drut, J. E. (2016). Ground-state energy, density profiles, and momentum distribution of attractively interacting 1D Fermi gases with hard-wall boundaries: a Monte Carlo study. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(22), 225001. doi:10.1088/0953-4075/49/22/225001 es_ES
dc.description.references Tan, S. (2008). Energetics of a strongly correlated Fermi gas. Annals of Physics, 323(12), 2952-2970. doi:10.1016/j.aop.2008.03.004 es_ES
dc.description.references Rammelmüller, L., Porter, W. J., Braun, J., & Drut, J. E. (2017). Evolution from few- to many-body physics in one-dimensional Fermi systems: One- and two-body density matrices and particle-partition entanglement. Physical Review A, 96(3). doi:10.1103/physreva.96.033635 es_ES
dc.description.references Hao, Y., Zhang, Y., & Chen, S. (2007). One-dimensional fermionic gases with attractivep-wave interaction in a hard-wall trap. Physical Review A, 76(6). doi:10.1103/physreva.76.063601 es_ES
dc.description.references Pȩcak, D., Gajda, M., & Sowiński, T. (2016). Two-flavour mixture of a few fermions of different mass in a one-dimensional harmonic trap. New Journal of Physics, 18(1), 013030. doi:10.1088/1367-2630/18/1/013030 es_ES
dc.description.references Cui, X., & Ho, T.-L. (2013). Phase Separation in Mixtures of Repulsive Fermi Gases Driven by Mass Difference. Physical Review Letters, 110(16). doi:10.1103/physrevlett.110.165302 es_ES
dc.description.references Cui, X., & Ho, T.-L. (2014). Ground-state ferromagnetic transition in strongly repulsive one-dimensional Fermi gases. Physical Review A, 89(2). doi:10.1103/physreva.89.023611 es_ES
dc.description.references Fratini, E., & Pilati, S. (2014). Zero-temperature equation of state and phase diagram of repulsive fermionic mixtures. Physical Review A, 90(2). doi:10.1103/physreva.90.023605 es_ES
dc.description.references Blume, D. (2008). Small mass- and trap-imbalanced two-component Fermi systems. Physical Review A, 78(1). doi:10.1103/physreva.78.013613 es_ES
dc.description.references Baranov, M. A., Lobo, C., & Shlyapnikov, G. V. (2008). Superfluid pairing between fermions with unequal masses. Physical Review A, 78(3). doi:10.1103/physreva.78.033620 es_ES
dc.description.references Stewart, G. R. (1984). Heavy-fermion systems. Reviews of Modern Physics, 56(4), 755-787. doi:10.1103/revmodphys.56.755 es_ES
dc.description.references Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P., & Törmä, P. (2018). The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Reports on Progress in Physics, 81(4), 046401. doi:10.1088/1361-6633/aaa4ad es_ES
dc.description.references Pęcak, D., & Sowiński, T. (2019). Intercomponent correlations in attractive one-dimensional mass-imbalanced few-body mixtures. Physical Review A, 99(4). doi:10.1103/physreva.99.043612 es_ES
dc.description.references Onofrio, R. (2016). Cooling and thermometry of atomic Fermi gases. Physics-Uspekhi, 59(11), 1129-1153. doi:10.3367/ufne.2016.07.037873 es_ES
dc.description.references Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles, J., & Salomon, C. (2001). Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea. Physical Review Letters, 87(8). doi:10.1103/physrevlett.87.080403 es_ES
dc.description.references Truscott, A. G. (2001). Observation of Fermi Pressure in a Gas of Trapped Atoms. Science, 291(5513), 2570-2572. doi:10.1126/science.1059318 es_ES
dc.description.references Fukuhara, T., Sugawa, S., Takasu, Y., & Takahashi, Y. (2009). All-optical formation of quantum degenerate mixtures. Physical Review A, 79(2). doi:10.1103/physreva.79.021601 es_ES
dc.description.references Wu, C.-H., Santiago, I., Park, J. W., Ahmadi, P., & Zwierlein, M. W. (2011). Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea. Physical Review A, 84(1). doi:10.1103/physreva.84.011601 es_ES
dc.description.references Roati, G., Riboli, F., Modugno, G., & Inguscio, M. (2002). Fermi-Bose Quantum DegenerateK40−R87bMixture with Attractive Interaction. Physical Review Letters, 89(15). doi:10.1103/physrevlett.89.150403 es_ES
dc.description.references Hadzibabic, Z., Stan, C. A., Dieckmann, K., Gupta, S., Zwierlein, M. W., Görlitz, A., & Ketterle, W. (2002). Two-Species Mixture of Quantum Degenerate Bose and Fermi Gases. Physical Review Letters, 88(16). doi:10.1103/physrevlett.88.160401 es_ES
dc.description.references DeSalvo, B. J., Patel, K., Johansen, J., & Chin, C. (2017). Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. Physical Review Letters, 119(23). doi:10.1103/physrevlett.119.233401 es_ES
dc.description.references Imambekov, A., & Demler, E. (2006). Applications of exact solution for strongly interacting one-dimensional Bose–Fermi mixture: Low-temperature correlation functions, density profiles, and collective modes. Annals of Physics, 321(10), 2390-2437. doi:10.1016/j.aop.2005.11.017 es_ES
dc.description.references Deuretzbacher, F., Becker, D., Bjerlin, J., Reimann, S. M., & Santos, L. (2017). Spin-chain model for strongly interacting one-dimensional Bose-Fermi mixtures. Physical Review A, 95(4). doi:10.1103/physreva.95.043630 es_ES
dc.description.references Fang, B., Vignolo, P., Miniatura, C., & Minguzzi, A. (2009). Fermionization of a strongly interacting Bose-Fermi mixture in a one-dimensional harmonic trap. Physical Review A, 79(2). doi:10.1103/physreva.79.023623 es_ES
dc.description.references Decamp, J., Jünemann, J., Albert, M., Rizzi, M., Minguzzi, A., & Vignolo, P. (2017). Strongly correlated one-dimensional Bose–Fermi quantum mixtures: symmetry and correlations. New Journal of Physics, 19(12), 125001. doi:10.1088/1367-2630/aa94ef es_ES
dc.description.references Deuretzbacher, F., Becker, D., & Santos, L. (2016). Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases. Physical Review A, 94(2). doi:10.1103/physreva.94.023606 es_ES
dc.description.references Dehkharghani, A. S., Bellotti, F. F., & Zinner, N. T. (2017). Analytical and numerical studies of Bose–Fermi mixtures in a one-dimensional harmonic trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(14), 144002. doi:10.1088/1361-6455/aa7797 es_ES
dc.description.references Wang, H., Hao, Y., & Zhang, Y. (2012). Density-functional theory for one-dimensional harmonically trapped Bose-Fermi mixture. Physical Review A, 85(5). doi:10.1103/physreva.85.053630 es_ES
dc.description.references Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Bunching-antibunching crossover in harmonically trapped few-body Bose-Fermi mixtures. Physical Review A, 98(2). doi:10.1103/physreva.98.023602 es_ES
dc.description.references Chen, J., Schurer, J. M., & Schmelcher, P. (2018). Entanglement Induced Interactions in Binary Mixtures. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043401 es_ES
dc.description.references Lelas, K., Jukić, D., & Buljan, H. (2009). Ground-state properties of a one-dimensional strongly interacting Bose-Fermi mixture in a double-well potential. Physical Review A, 80(5). doi:10.1103/physreva.80.053617 es_ES
dc.description.references Lü, X., Yin, X., & Zhang, Y. (2010). Hard-core Bose-Fermi mixture in one-dimensional split traps. Physical Review A, 81(4). doi:10.1103/physreva.81.043607 es_ES
dc.description.references Chen, S., Cao, J., & Gu, S.-J. (2010). Mixture of Tonks-Girardeau gas and Fermi gas in one-dimensional optical lattices. Physical Review A, 82(5). doi:10.1103/physreva.82.053625 es_ES
dc.description.references Šeba, P. (1986). Some remarks on the δ′-interaction in one dimension. Reports on Mathematical Physics, 24(1), 111-120. doi:10.1016/0034-4877(86)90045-5 es_ES
dc.description.references Sen, D. (2003). The fermionic limit of the  -function Bose gas: a pseudopotential approach. Journal of Physics A: Mathematical and General, 36(27), 7517-7531. doi:10.1088/0305-4470/36/27/305 es_ES
dc.description.references Kanjilal, K., & Blume, D. (2004). Nondivergent pseudopotential treatment of spin-polarized fermions under one- and three-dimensional harmonic confinement. Physical Review A, 70(4). doi:10.1103/physreva.70.042709 es_ES
dc.description.references Cheon, T., & Shigehara, T. (1999). Fermion-Boson Duality of One-Dimensional Quantum Particles with Generalized Contact Interactions. Physical Review Letters, 82(12), 2536-2539. doi:10.1103/physrevlett.82.2536 es_ES
dc.description.references Cui, X. (2016). Universal one-dimensional atomic gases near odd-wave resonance. Physical Review A, 94(4). doi:10.1103/physreva.94.043636 es_ES
dc.description.references Sun, B., Zhou, D. L., & You, L. (2006). Entanglement between two interacting atoms in a one-dimensional harmonic trap. Physical Review A, 73(1). doi:10.1103/physreva.73.012336 es_ES
dc.description.references Bender, S. A., Erker, K. D., & Granger, B. E. (2005). Exponentially Decaying Correlations in a Gas of Strongly Interacting Spin-Polarized 1D Fermions with Zero-Range Interactions. Physical Review Letters, 95(23). doi:10.1103/physrevlett.95.230404 es_ES
dc.description.references Muth, D., Fleischhauer, M., & Schmidt, B. (2010). Discretized versus continuous models ofp-wave interacting fermions in one dimension. Physical Review A, 82(1). doi:10.1103/physreva.82.013602 es_ES
dc.description.references Zhang, Z. D., Astrakharchik, G. E., Aveline, D. C., Choi, S., Perrin, H., Bergeman, T. H., & Olshanii, M. (2014). Breakdown of scale invariance in the vicinity of the Tonks-Girardeau limit. Physical Review A, 89(6). doi:10.1103/physreva.89.063616 es_ES
dc.description.references Hu, H., Pan, L., & Chen, S. (2016). Strongly interacting one-dimensional quantum gas mixtures with weakp-wave interactions. Physical Review A, 93(3). doi:10.1103/physreva.93.033636 es_ES
dc.description.references Yang, L., Guan, X., & Cui, X. (2016). Engineering quantum magnetism in one-dimensional trapped Fermi gases withp-wave interactions. Physical Review A, 93(5). doi:10.1103/physreva.93.051605 es_ES
dc.description.references Trautmann, A., Ilzhöfer, P., Durastante, G., Politi, C., Sohmen, M., Mark, M. J., & Ferlaino, F. (2018). Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms. Physical Review Letters, 121(21). doi:10.1103/physrevlett.121.213601 es_ES
dc.description.references Sinha, S., & Santos, L. (2007). Cold Dipolar Gases in Quasi-One-Dimensional Geometries. Physical Review Letters, 99(14). doi:10.1103/physrevlett.99.140406 es_ES
dc.description.references Deuretzbacher, F., Cremon, J. C., & Reimann, S. M. (2010). Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap. Physical Review A, 81(6). doi:10.1103/physreva.81.063616 es_ES
dc.description.references James, D. F. V. (1998). Quantum dynamics of cold trapped ions with application to quantum computation. Applied Physics B: Lasers and Optics, 66(2), 181-190. doi:10.1007/s003400050373 es_ES
dc.description.references Kościk, P. (2015). The von Neumann entanglement entropy for Wigner-crystal states in one dimensional N-particle systems. Physics Letters A, 379(4), 293-298. doi:10.1016/j.physleta.2014.12.001 es_ES
dc.description.references Kościk, P. (2017). Fermionized Dipolar Bosons Trapped in a Harmonic Trap. Few-Body Systems, 58(2). doi:10.1007/s00601-017-1229-y es_ES
dc.description.references Oldham, K. B. (1968). Approximations for the x expx 2 erfc x Function. Mathematics of Computation, 22(102), 454. doi:10.2307/2004681 es_ES
dc.description.references Abad, M., Guilleumas, M., Mayol, R., Pi, M., & Jezek, D. M. (2011). A dipolar self-induced bosonic Josephson junction. EPL (Europhysics Letters), 94(1), 10004. doi:10.1209/0295-5075/94/10004 es_ES
dc.description.references Gallemí, A., Guilleumas, M., Mayol, R., & Sanpera, A. (2013). Role of anisotropy in dipolar bosons in triple-well potentials. Physical Review A, 88(6). doi:10.1103/physreva.88.063645 es_ES
dc.description.references Mazzarella, G., & Penna, V. (2015). Localization–delocalization transition of dipolar bosons in a four-well potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(6), 065001. doi:10.1088/0953-4075/48/6/065001 es_ES
dc.description.references Sowiński, T., Dutta, O., Hauke, P., Tagliacozzo, L., & Lewenstein, M. (2012). Dipolar Molecules in Optical Lattices. Physical Review Letters, 108(11). doi:10.1103/physrevlett.108.115301 es_ES
dc.description.references Volosniev, A. G., Armstrong, J. R., Fedorov, D. V., Jensen, A. S., Valiente, M., & Zinner, N. T. (2013). Bound states of dipolar bosons in one-dimensional systems. New Journal of Physics, 15(4), 043046. doi:10.1088/1367-2630/15/4/043046 es_ES
dc.description.references Bjerlin, J., Bengtsson, J., Deuretzbacher, F., Kristinsdóttir, L. H., & Reimann, S. M. (2018). Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation. Physical Review A, 97(2). doi:10.1103/physreva.97.023634 es_ES
dc.description.references Deuretzbacher, F., Bruun, G. M., Pethick, C. J., Jona-Lasinio, M., Reimann, S. M., & Santos, L. (2013). Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions. Physical Review A, 88(3). doi:10.1103/physreva.88.033611 es_ES
dc.description.references Graß, T. (2015). Quench dynamics of dipolar fermions in a one-dimensional harmonic trap. Physical Review A, 92(2). doi:10.1103/physreva.92.023634 es_ES
dc.description.references Nayak, C., Simon, S. H., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-Abelian anyons and topological quantum computation. Reviews of Modern Physics, 80(3), 1083-1159. doi:10.1103/revmodphys.80.1083 es_ES
dc.description.references Pachos, J. K. (2009). Introduction to Topological Quantum Computation. doi:10.1017/cbo9780511792908 es_ES
dc.description.references Aguado, M., Brennen, G. K., Verstraete, F., & Cirac, J. I. (2008). Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices. Physical Review Letters, 101(26). doi:10.1103/physrevlett.101.260501 es_ES
dc.description.references Keilmann, T., Lanzmich, S., McCulloch, I., & Roncaglia, M. (2011). Statistically induced phase transitions and anyons in 1D optical lattices. Nature Communications, 2(1). doi:10.1038/ncomms1353 es_ES
dc.description.references Girardeau, M. D. (2006). Anyon-Fermion Mapping and Applications to Ultracold Gases in Tight Waveguides. Physical Review Letters, 97(10). doi:10.1103/physrevlett.97.100402 es_ES
dc.description.references Hao, Y., Zhang, Y., & Chen, S. (2008). Ground-state properties of one-dimensional anyon gases. Physical Review A, 78(2). doi:10.1103/physreva.78.023631 es_ES
dc.description.references Del Campo, A. (2008). Fermionization and bosonization of expanding one-dimensional anyonic fluids. Physical Review A, 78(4). doi:10.1103/physreva.78.045602 es_ES
dc.description.references Zinner, N. T. (2015). Strongly interacting mesoscopic systems of anyons in one dimension. Physical Review A, 92(6). doi:10.1103/physreva.92.063634 es_ES
dc.description.references Colcelli, A., Mussardo, G., & Trombettoni, A. (2018). Deviations from off-diagonal long-range order in one-dimensional quantum systems. EPL (Europhysics Letters), 122(5), 50006. doi:10.1209/0295-5075/122/50006 es_ES
dc.description.references Kundu, A. (1999). Exact Solution of DoubleδFunction Bose Gas through an Interacting Anyon Gas. Physical Review Letters, 83(7), 1275-1278. doi:10.1103/physrevlett.83.1275 es_ES
dc.description.references Del Campo, A., Delgado, F., García-Calderón, G., Muga, J. G., & Raizen, M. G. (2006). Decay by tunneling of bosonic and fermionic Tonks-Girardeau gases. Physical Review A, 74(1). doi:10.1103/physreva.74.013605 es_ES
dc.description.references Del Campo, A. (2011). Long-time behavior of many-particle quantum decay. Physical Review A, 84(1). doi:10.1103/physreva.84.012113 es_ES
dc.description.references Lode, A. U. J., Klaiman, S., Alon, O. E., Streltsov, A. I., & Cederbaum, L. S. (2014). Controlling the velocities and the number of emitted particles in the tunneling to open space dynamics. Physical Review A, 89(5). doi:10.1103/physreva.89.053620 es_ES
dc.description.references Gharashi, S. E., & Blume, D. (2015). Tunneling dynamics of two interacting one-dimensional particles. Physical Review A, 92(3). doi:10.1103/physreva.92.033629 es_ES
dc.description.references Lundmark, R., Forssén, C., & Rotureau, J. (2015). Tunneling theory for tunable open quantum systems of ultracold atoms in one-dimensional traps. Physical Review A, 91(4). doi:10.1103/physreva.91.041601 es_ES
dc.description.references Dobrzyniecki, J., & Sowiński, T. (2018). Dynamics of a few interacting bosons escaping from an open well. Physical Review A, 98(1). doi:10.1103/physreva.98.013634 es_ES
dc.description.references Dobrzyniecki, J., & Sowiński, T. (2019). Momentum correlations of a few ultracold bosons escaping from an open well. Physical Review A, 99(6). doi:10.1103/physreva.99.063608 es_ES
dc.description.references Pons, M., Sokolovski, D., & del Campo, A. (2012). Fidelity of fermionic-atom number states subjected to tunneling decay. Physical Review A, 85(2). doi:10.1103/physreva.85.022107 es_ES
dc.description.references Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles. Few-Body Systems, 57(1), 11-43. doi:10.1007/s00601-015-1024-6 es_ES
dc.description.references Harshman, N. L. (2015). One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries. II. N Particles. Few-Body Systems, 57(1), 45-69. doi:10.1007/s00601-015-1025-5 es_ES
dc.description.references Yurovsky, V. A. (2014). Permutation Symmetry in Spinor Quantum Gases: Selection Rules, Conservation Laws, and Correlations. Physical Review Letters, 113(20). doi:10.1103/physrevlett.113.200406 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem