- -

From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peris Tortajada, Miguel es_ES
dc.contributor.author Rubio-Arraez, Susana es_ES
dc.contributor.author Castelló Gómez, María Luisa es_ES
dc.contributor.author Ortolá Ortolá, Mª Dolores es_ES
dc.date.accessioned 2020-12-05T04:33:11Z
dc.date.available 2020-12-05T04:33:11Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 2304-8158 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156523
dc.description.abstract [EN] Due to the growing interest in improving the nutritional profile of bakery products, we have dealt with the most recent and relevant contributions regarding potential replacements for carbohydrates, proteins, and fats. Focusing on the influence of carbohydrates on metabolism, their excess implies obesity, diabetes and tooth decay. However, they are technologically important, since they are responsible for the structure of many bakery products. Regarding of the lipid profile, saturated fats have a great impact on the appearance of cardiovascular disease. Fortunately, nature and the food industry offer alternatives to traditional oils/butters with large amounts of omega 3 and other components that can mitigate these problems. Other relevant aspects are related to allergies concerning egg proteins, gluten or even requirements for vegan consumers. Several studies have been performed in this line, replacing eggs with milk serum, different mucilages obtained from legumes or some gums, etc. In conclusion, many papers have been published showing the possibility of successfully replacing (both at technological and sensory levels) less healthy ingredients with others that are nutritionally better. The challenge now is to combine these better components in a given product, as well as to evaluate possible interactions among them. es_ES
dc.description.sponsorship This work was supported by the Generalitat Valenciana (AICO/2017/043). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Foods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bakery es_ES
dc.subject Sweeteners es_ES
dc.subject Fat es_ES
dc.subject Protein es_ES
dc.subject Fiber es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/foods8120660 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F043/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Peris Tortajada, M.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD. (2019). From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods. 8(12):1-24. https://doi.org/10.3390/foods8120660 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/foods8120660 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 31835412 es_ES
dc.identifier.pmcid PMC6963723 es_ES
dc.relation.pasarela S\398722 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Eswaran, S., Muir, J., & Chey, W. D. (2013). Fiber and Functional Gastrointestinal Disorders. American Journal of Gastroenterology, 108(5), 718-727. doi:10.1038/ajg.2013.63 es_ES
dc.description.references Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106-128. doi:10.1016/j.tifs.2017.07.003 es_ES
dc.description.references Rohm, H., Schäper, C., & Zahn, S. (2018). Interesterified fats in chocolate and bakery products: A concise review. LWT, 87, 379-384. doi:10.1016/j.lwt.2017.08.076 es_ES
dc.description.references Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food and Chemical Toxicology, 40(10), 1375-1381. doi:10.1016/s0278-6915(02)00105-9 es_ES
dc.description.references Lu, Y., Levin, G. V., & Donner, T. W. (2007). Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity and Metabolism, 0(0), 071018044430010-??? doi:10.1111/j.1463-1326.2007.00799.x es_ES
dc.description.references Rubio-Arraez, S., Benavent, C., Ortolá, M. D., & Castelló, M. L. (2018). Influence of Low Glycaemic Index Sweeteners on Antioxidant, Sensory, Mechanical, and Physicochemical Properties of a Watermelon Jelly. Journal of Food Quality, 2018, 1-7. doi:10.1155/2018/8412017 es_ES
dc.description.references Rodríguez, A., Magan, N., & Medina, A. (2016). Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products. International Journal of Food Microbiology, 231, 42-47. doi:10.1016/j.ijfoodmicro.2016.04.031 es_ES
dc.description.references Gasmalla, M. A. A., Yang, R., & Hua, X. (2014). Stevia rebaudiana Bertoni: An alternative Sugar Replacer and Its Application in Food Industry. Food Engineering Reviews, 6(4), 150-162. doi:10.1007/s12393-014-9080-0 es_ES
dc.description.references Trattner, S., Becker, W., Wretling, S., Öhrvik, V., & Mattisson, I. (2015). Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids. Food Chemistry, 175, 423-430. doi:10.1016/j.foodchem.2014.11.145 es_ES
dc.description.references Esfahani, A., Wong, J. M. W., Mirrahimi, A., Villa, C. R., & Kendall, C. W. C. (2011). The application of the glycemic index and glycemic load in weight loss: A review of the clinical evidence. IUBMB Life, 63(1), 7-13. doi:10.1002/iub.418 es_ES
dc.description.references Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., & Yang, Y. (2017). In vivo study of medical and biological properties of functional bakery products with the addition of pumpkin flour. Bioactive Carbohydrates and Dietary Fibre, 12, 20-24. doi:10.1016/j.bcdf.2017.09.001 es_ES
dc.description.references Martinez-Saez, N., García, A. T., Pérez, I. D., Rebollo-Hernanz, M., Mesías, M., Morales, F. J., … del Castillo, M. D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 216, 114-122. doi:10.1016/j.foodchem.2016.07.173 es_ES
dc.description.references Abdel-Aal, E.-S. M., & Rabalski, I. (2013). Effect of baking on free and bound phenolic acids in wholegrain bakery products. Journal of Cereal Science, 57(3), 312-318. doi:10.1016/j.jcs.2012.12.001 es_ES
dc.description.references Purlis, E. (2010). Browning development in bakery products – A review. Journal of Food Engineering, 99(3), 239-249. doi:10.1016/j.jfoodeng.2010.03.008 es_ES
dc.description.references Liang, S., & Were, L. M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions. Food Chemistry, 241, 135-142. doi:10.1016/j.foodchem.2017.08.084 es_ES
dc.description.references Karp, S., Wyrwisz, J., Kurek, M., & Wierzbicka, A. (2016). Physical properties of muffins sweetened with steviol glycosides as the sucrose replacement. Food Science and Biotechnology, 25(6), 1591-1596. doi:10.1007/s10068-016-0245-x es_ES
dc.description.references Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026 es_ES
dc.description.references Patel, S., & Goyal, A. (2010). Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology, 27(5), 1119-1128. doi:10.1007/s11274-010-0558-5 es_ES
dc.description.references Tavera-Quiroz, M. J., Urriza, M., Pinotti, A., & Bertola, N. (2015). Baked snack from green apples formulated with the addition of isomalt. LWT - Food Science and Technology, 62(2), 1004-1010. doi:10.1016/j.lwt.2015.02.009 es_ES
dc.description.references Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617 es_ES
dc.description.references Ghosh, S., & Sudha, M. L. (2011). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372-379. doi:10.3109/09637486.2011.627846 es_ES
dc.description.references Regnat, K., Mach, R. L., & Mach-Aigner, A. R. (2017). Erythritol as sweetener—wherefrom and whereto? Applied Microbiology and Biotechnology, 102(2), 587-595. doi:10.1007/s00253-017-8654-1 es_ES
dc.description.references Singla, V., & Chakkaravarthi, S. (2017). Applications of prebiotics in food industry: A review. Food Science and Technology International, 23(8), 649-667. doi:10.1177/1082013217721769 es_ES
dc.description.references Rios, R. V., Pessanha, M. D. F., Almeida, P. F. de, Viana, C. L., & Lannes, S. C. da S. (2014). Application of fats in some food products. Food Science and Technology (Campinas), 34(1), 3-15. doi:10.1590/s0101-20612014000100001 es_ES
dc.description.references Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science & Technology, 30(1), 6-15. doi:10.1016/j.tifs.2013.01.001 es_ES
dc.description.references Zettel, V., & Hitzmann, B. (2016). Chia (Salvia hispanicaL.) as fat replacer in sweet pan breads. International Journal of Food Science & Technology, 51(6), 1425-1432. doi:10.1111/ijfs.13110 es_ES
dc.description.references Doménech-Asensi, G., Merola, N., López-Fernández, A., Ros-Berruezo, G., & Frontela-Saseta, C. (2015). Influence of the reformulation of ingredients in bakery products on healthy characteristics and acceptability of consumers. International Journal of Food Sciences and Nutrition, 67(1), 74-82. doi:10.3109/09637486.2015.1126565 es_ES
dc.description.references Umesha, S. S., Manohar, R. S., Indiramma, A. R., Akshitha, S., & Naidu, K. A. (2015). Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. LWT - Food Science and Technology, 62(1), 654-661. doi:10.1016/j.lwt.2014.02.018 es_ES
dc.description.references Rajiv, J., Indrani, D., Prabhasankar, P., & Rao, G. V. (2011). Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum). Journal of Food Science and Technology, 49(5), 587-593. doi:10.1007/s13197-011-0307-2 es_ES
dc.description.references Mesías, M., Holgado, F., Márquez-Ruiz, G., & Morales, F. J. (2016). Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT, 73, 528-535. doi:10.1016/j.lwt.2016.06.056 es_ES
dc.description.references Luna Pizarro, P., Almeida, E. L., Sammán, N. C., & Chang, Y. K. (2013). Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. LWT - Food Science and Technology, 54(1), 73-79. doi:10.1016/j.lwt.2013.04.017 es_ES
dc.description.references Coelho, M. S., & Salas-Mellado, M. de las M. (2015). Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT - Food Science and Technology, 60(2), 729-736. doi:10.1016/j.lwt.2014.10.033 es_ES
dc.description.references Borneo, R., Aguirre, A., & León, A. E. (2010). Chia (Salvia hispanica L) Gel Can Be Used as Egg or Oil Replacer in Cake Formulations. Journal of the American Dietetic Association, 110(6), 946-949. doi:10.1016/j.jada.2010.03.011 es_ES
dc.description.references Fernandes, S. S., & Salas-Mellado, M. de las M. (2017). Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, 227, 237-244. doi:10.1016/j.foodchem.2017.01.075 es_ES
dc.description.references Oliveira de Souza, N. C., de Lacerda de Oliveira, L., Rodrigues de Alencar, E., Moreira, G. P., Santos Leandro, E. dos, Ginani, V. C., & Zandonadi, R. P. (2018). Textural, physical and sensory impacts of the use of green banana puree to replace fat in reduced sugar pound cakes. LWT, 89, 617-623. doi:10.1016/j.lwt.2017.11.050 es_ES
dc.description.references Tarancón, P., Fiszman, S. M., Salvador, A., & Tárrega, A. (2013). Formulating biscuits with healthier fats. Consumer profiling of textural and flavour sensations during consumption. Food Research International, 53(1), 134-140. doi:10.1016/j.foodres.2013.03.053 es_ES
dc.description.references Chugh, B., Singh, G., & Kumbhar, B. K. (2013). Development of Low-Fat Soft Dough Biscuits Using Carbohydrate-Based Fat Replacers. International Journal of Food Science, 2013, 1-12. doi:10.1155/2013/576153 es_ES
dc.description.references Martínez-Cervera, S., Salvador, A., & Sanz, T. (2015). Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT - Food Science and Technology, 63(2), 1083-1090. doi:10.1016/j.lwt.2015.04.067 es_ES
dc.description.references Colla, K., & Gamlath, S. (2015). Inulin and maltodextrin can replace fat in baked savoury legume snacks. International Journal of Food Science & Technology, 50(10), 2297-2305. doi:10.1111/ijfs.12892 es_ES
dc.description.references Forker, A., Zahn, S., & Rohm, H. (2011). A Combination of Fat Replacers Enables the Production of Fat-reduced Shortdough Biscuits with High-sensory quality. Food and Bioprocess Technology, 5(6), 2497-2505. doi:10.1007/s11947-011-0536-4 es_ES
dc.description.references Aggarwal, D., Sabikhi, L., & Sathish Kumar, M. H. (2016). Formulation of reduced-calorie biscuits using artificial sweeteners and fat replacer with dairy–multigrain approach. NFS Journal, 2, 1-7. doi:10.1016/j.nfs.2015.10.001 es_ES
dc.description.references Singh, A., & Kumar, P. (2017). Gluten free approach in fat and sugar amended biscuits: A healthy concern for obese and diabetic individuals. Journal of Food Processing and Preservation, 42(3), e13546. doi:10.1111/jfpp.13546 es_ES
dc.description.references LAGUNA, L., VARELA, P., SALVADOR, A., SANZ, T., & FISZMAN, S. M. (2011). BALANCING TEXTURE AND OTHER SENSORY FEATURES IN REDUCED FAT SHORT-DOUGH BISCUITS. Journal of Texture Studies, 43(3), 235-245. doi:10.1111/j.1745-4603.2011.00333.x es_ES
dc.description.references Błońska, A., Marzec, A., & Błaszczyk, A. (2014). Instrumental Evaluation of Acoustic and Mechanical Texture Properties of Short-Dough Biscuits with Different Content of Fat and Inulin. Journal of Texture Studies, 45(3), 226-234. doi:10.1111/jtxs.12068 es_ES
dc.description.references Giarnetti, M., Paradiso, V. M., Caponio, F., Summo, C., & Pasqualone, A. (2015). Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT - Food Science and Technology, 63(1), 339-345. doi:10.1016/j.lwt.2015.03.063 es_ES
dc.description.references Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods, 19, 868-881. doi:10.1016/j.jff.2014.06.029 es_ES
dc.description.references O’Dwyer, S. P., O’Beirne, D., Eidhin, D. N., & O’Kennedy, B. T. (2013). Effects of emulsification and microencapsulation on the oxidative stability of camelina and sunflower oils. Journal of Microencapsulation, 30(5), 451-459. doi:10.3109/02652048.2012.752533 es_ES
dc.description.references Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037 es_ES
dc.description.references Felisberto, M. H. F., Wahanik, A. L., Gomes-Ruffi, C. R., Clerici, M. T. P. S., Chang, Y. K., & Steel, C. J. (2015). Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Science and Technology, 63(2), 1049-1055. doi:10.1016/j.lwt.2015.03.114 es_ES
dc.description.references Quiles, A., Llorca, E., Schmidt, C., Reißner, A.-M., Struck, S., Rohm, H., & Hernando, I. (2018). Use of berry pomace to replace flour, fat or sugar in cakes. International Journal of Food Science & Technology, 53(6), 1579-1587. doi:10.1111/ijfs.13765 es_ES
dc.description.references Othman, N. A., Abdul Manaf, M., Harith, S., & Wan Ishak, W. R. (2018). Influence of Avocado Purée as a Fat Replacer on Nutritional, Fatty Acid, and Organoleptic Properties of Low-Fat Muffins. Journal of the American College of Nutrition, 37(7), 583-588. doi:10.1080/07315724.2018.1451408 es_ES
dc.description.references ROMANCHIK-CERPOVICZ, J. E., TILMON, R. W., & BALDREE, K. A. (2002). Moisture Retention and Consumer Acceptability of Chocolate Bar Cookies Prepared With Okra Gum as a Fat Ingredient Substitute. Journal of the American Dietetic Association, 102(9), 1301-1303. doi:10.1016/s0002-8223(02)90287-7 es_ES
dc.description.references GEERA, B., REILING, J. A., HUTCHISON, M. A., RYBAK, D., SANTHA, B., & RATNAYAKE, W. S. (2011). A COMPREHENSIVE EVALUATION OF EGG AND EGG REPLACERS ON THE PRODUCT QUALITY OF MUFFINS. Journal of Food Quality, 34(5), 333-342. doi:10.1111/j.1745-4557.2011.00400.x es_ES
dc.description.references Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2008). Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality. Food and Bioprocess Technology, 3(4), 577-585. doi:10.1007/s11947-008-0098-2 es_ES
dc.description.references Chung, H.-J., Cho, A., & Lim, S.-T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Science and Technology, 57(1), 260-266. doi:10.1016/j.lwt.2014.01.018 es_ES
dc.description.references Bourekoua, H., Benatallah, L., Zidoune, M. N., & Rosell, C. M. (2016). Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. LWT, 73, 342-350. doi:10.1016/j.lwt.2016.06.032 es_ES
dc.description.references Skendi, A., Mouselemidou, P., Papageorgiou, M., & Papastergiadis, E. (2018). Effect of acorn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chemistry, 253, 119-126. doi:10.1016/j.foodchem.2018.01.144 es_ES
dc.description.references Pasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. doi:10.1016/j.heliyon.2019.e02242 es_ES
dc.description.references Velázquez, N., Sánchez, H., Osella, C., & Santiago, L. G. (2011). Using white sorghum flour for gluten-free breadmaking. International Journal of Food Sciences and Nutrition, 63(4), 491-497. doi:10.3109/09637486.2011.636734 es_ES
dc.description.references Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT - Food Science and Technology, 65, 637-644. doi:10.1016/j.lwt.2015.08.063 es_ES
dc.description.references Dayakar Rao, B., Anis, M., Kalpana, K., Sunooj, K. V., Patil, J. V., & Ganesh, T. (2016). Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8-13. doi:10.1016/j.lwt.2015.11.033 es_ES
dc.description.references Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75, 158-164. doi:10.1016/j.jcs.2017.04.004 es_ES
dc.description.references Rai, S., Kaur, A., & Singh, B. (2011). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785-789. doi:10.1007/s13197-011-0547-1 es_ES
dc.description.references Chauhan, A., Saxena, D. C., & Singh, S. (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food & Agriculture, 2(1). doi:10.1080/23311932.2015.1125773 es_ES
dc.description.references Chauhan, A., Saxena, D. C., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63(2), 939-945. doi:10.1016/j.lwt.2015.03.115 es_ES
dc.description.references Inglett, G. E., Chen, D., & Liu, S. X. (2015). Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT - Food Science and Technology, 63(1), 214-220. doi:10.1016/j.lwt.2015.03.056 es_ES
dc.description.references Yamsaengsung, R., Berghofer, E., & Schoenlechner, R. (2012). Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. International Journal of Food Science & Technology, 47(10), 2221-2227. doi:10.1111/j.1365-2621.2012.03092.x es_ES
dc.description.references Brito, I. L., de Souza, E. L., Felex, S. S. S., Madruga, M. S., Yamashita, F., & Magnani, M. (2014). Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. Journal of Food Science and Technology, 52(9), 5866-5873. doi:10.1007/s13197-014-1659-1 es_ES
dc.description.references Watanabe, K., Kawanishi-Asaoka, M., Myojin, C., Awata, S., Ofusa, K., & Kodama, K. (2014). Amino Acid Composition, Oxidative Stability, and Consumer Acceptance of Cookies Made with Quinoa Flour. Food Science and Technology Research, 20(3), 687-691. doi:10.3136/fstr.20.687 es_ES
dc.description.references Bick, M. A., Fogaça, A. de O., & Storck, C. R. (2014). Biscoitos com diferentes concentrações de farinha de quinoa em substituição parcial à farinha de trigo. Brazilian Journal of Food Technology, 17(2), 121-129. doi:10.1590/bjft.2014.015 es_ES
dc.description.references Jan, U., Gani, A., Ahmad, M., Shah, U., Baba, W. N., Masoodi, F. A., … Wani, S. M. (2015). Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties. Journal of Food Science and Technology, 52(10), 6334-6344. doi:10.1007/s13197-015-1773-8 es_ES
dc.description.references Sakač, M., Pestorić, M., Mišan, A., Nedeljković, N., … Jambrec, D. (2015). Antioxidant Capacity, Mineral Content and Sensory Properties of Gluten-Free Rice and Buckwheat Cookies. Food Technology and Biotechnology, 53(1), 38-47. doi:10.17113/ftb.53.01.15.3633 es_ES
dc.description.references Dapčević Hadnađev, T. R., Torbica, A. M., & Hadnađev, M. S. (2012). Influence of Buckwheat Flour and Carboxymethyl Cellulose on Rheological Behaviour and Baking Performance of Gluten-Free Cookie Dough. Food and Bioprocess Technology, 6(7), 1770-1781. doi:10.1007/s11947-012-0841-6 es_ES
dc.description.references Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., & Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2), 476-481. doi:10.1016/j.jcs.2012.04.012 es_ES
dc.description.references Cheng, Y. F., & Bhat, R. (2016). Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Bioscience, 14, 54-61. doi:10.1016/j.fbio.2016.03.002 es_ES
dc.description.references Mancebo, C. M., Rodriguez, P., & Gómez, M. (2016). Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT - Food Science and Technology, 67, 127-132. doi:10.1016/j.lwt.2015.11.045 es_ES
dc.description.references Pasqualone, A., De Angelis, D., Squeo, G., Difonzo, G., Caponio, F., & Summo, C. (2019). The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods, 8(10), 504. doi:10.3390/foods8100504 es_ES
dc.description.references De la Hera, E., Ruiz-París, E., Oliete, B., & Gómez, M. (2012). Studies of the quality of cakes made with wheat-lentil composite flours. LWT, 49(1), 48-54. doi:10.1016/j.lwt.2012.05.009 es_ES
dc.description.references Jones, J. M. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutrition Journal, 13(1). doi:10.1186/1475-2891-13-34 es_ES
dc.description.references Grundy, M. M.-L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., & Ellis, P. R. (2016). Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 116(5), 816-833. doi:10.1017/s0007114516002610 es_ES
dc.description.references Hollmann, J., Themeier, H., Neese, U., & Lindhauer, M. G. (2013). Dietary fibre fractions in cereal foods measured by a new integrated AOAC method. Food Chemistry, 140(3), 586-589. doi:10.1016/j.foodchem.2012.12.005 es_ES
dc.description.references Sirbu, A., & Arghire, C. (2017). Functional bread: Effect of inulin-type products addition on dough rheology and bread quality. Journal of Cereal Science, 75, 220-227. doi:10.1016/j.jcs.2017.03.029 es_ES
dc.description.references Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007 es_ES
dc.description.references Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. doi:10.1016/j.foodchem.2017.05.033 es_ES
dc.description.references Bingham, S., & Riboli, E. (2004). Diet and cancer — the European Prospective Investigation into Cancer and Nutrition. Nature Reviews Cancer, 4(3), 206-215. doi:10.1038/nrc1298 es_ES
dc.description.references Shukla, K., & Srivastava, S. (2011). Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. Journal of Food Science and Technology, 51(3), 527-534. doi:10.1007/s13197-011-0530-x es_ES
dc.description.references Mudgil, D., Barak, S., & Khatkar, B. S. (2016). Optimization of bread firmness, specific loaf volume and sensory acceptability of bread with soluble fiber and different water levels. Journal of Cereal Science, 70, 186-191. doi:10.1016/j.jcs.2016.06.009 es_ES
dc.description.references Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010 es_ES
dc.description.references Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066-1083. doi:10.1016/j.foodres.2016.08.016 es_ES
dc.description.references Ateş, G., & Elmacı, Y. (2018). Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT, 90, 519-525. doi:10.1016/j.lwt.2018.01.003 es_ES
dc.description.references Martínez-Cervera, S., Salvador, A., Muguerza, B., Moulay, L., & Fiszman, S. M. (2011). Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT - Food Science and Technology, 44(3), 729-736. doi:10.1016/j.lwt.2010.06.035 es_ES
dc.description.references Segundo, C., Román, L., Gómez, M., & Martínez, M. M. (2017). Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes. Food Chemistry, 219, 240-248. doi:10.1016/j.foodchem.2016.09.143 es_ES
dc.description.references Noort, M. W. J., Mattila, O., Katina, K., & van der Kamp, J. W. (2017). HealthBread: Wholegrain and high fibre breads with optimised textural quality. Journal of Cereal Science, 78, 57-65. doi:10.1016/j.jcs.2017.03.009 es_ES
dc.description.references Talens, C., Álvarez-Sabatel, S., Rios, Y., & Rodríguez, R. (2017). Effect of a new microwave-dried orange fibre ingredient vs. a commercial citrus fibre on texture and sensory properties of gluten-free muffins. Innovative Food Science & Emerging Technologies, 44, 83-88. doi:10.1016/j.ifset.2017.07.011 es_ES
dc.description.references Verdú, S., Barat, J. M., & Grau, R. (2017). Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT, 84, 419-425. doi:10.1016/j.lwt.2017.06.007 es_ES
dc.description.references Silva, F. de O., Miranda, T. G., Justo, T., Frasão, B. da S., Conte-Junior, C. A., Monteiro, M., & Perrone, D. (2018). Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT, 90, 224-231. doi:10.1016/j.lwt.2017.12.035 es_ES
dc.description.references Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012 es_ES
dc.description.references Laguna, L., Primo-Martín, C., Varela, P., Salvador, A., & Sanz, T. (2014). HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT - Food Science and Technology, 56(2), 494-501. doi:10.1016/j.lwt.2013.12.025 es_ES
dc.description.references Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:10.1016/j.lwt.2017.11.024 es_ES
dc.description.references Arufe, S., Della Valle, G., Chiron, H., Chenlo, F., Sineiro, J., & Moreira, R. (2017). Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 244(1), 1-10. doi:10.1007/s00217-017-2929-8 es_ES
dc.description.references Różyło, R., Hameed Hassoon, W., Gawlik-Dziki, U., Siastała, M., & Dziki, D. (2016). Study on the physical and antioxidant properties of gluten-free bread with brown algae. CyTA - Journal of Food, 15(2), 196-203. doi:10.1080/19476337.2016.1236839 es_ES
dc.description.references Kerch, G., Zicans, J., & Meri, R. M. (2010). The effect of chitosan oligosaccharides on bread staling. Journal of Cereal Science, 52(3), 491-495. doi:10.1016/j.jcs.2010.08.007 es_ES
dc.description.references Mogol, B. A., & Gökmen, V. (2016). Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food & Function, 7(8), 3431-3436. doi:10.1039/c6fo00755d es_ES
dc.description.references Vici, G., Belli, L., Biondi, M., & Polzonetti, V. (2016). Gluten free diet and nutrient deficiencies: A review. Clinical Nutrition, 35(6), 1236-1241. doi:10.1016/j.clnu.2016.05.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem