Mostrar el registro sencillo del ítem
dc.contributor.author | Peris Tortajada, Miguel | es_ES |
dc.contributor.author | Rubio-Arraez, Susana | es_ES |
dc.contributor.author | Castelló Gómez, María Luisa | es_ES |
dc.contributor.author | Ortolá Ortolá, Mª Dolores | es_ES |
dc.date.accessioned | 2020-12-05T04:33:11Z | |
dc.date.available | 2020-12-05T04:33:11Z | |
dc.date.issued | 2019-12 | es_ES |
dc.identifier.issn | 2304-8158 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156523 | |
dc.description.abstract | [EN] Due to the growing interest in improving the nutritional profile of bakery products, we have dealt with the most recent and relevant contributions regarding potential replacements for carbohydrates, proteins, and fats. Focusing on the influence of carbohydrates on metabolism, their excess implies obesity, diabetes and tooth decay. However, they are technologically important, since they are responsible for the structure of many bakery products. Regarding of the lipid profile, saturated fats have a great impact on the appearance of cardiovascular disease. Fortunately, nature and the food industry offer alternatives to traditional oils/butters with large amounts of omega 3 and other components that can mitigate these problems. Other relevant aspects are related to allergies concerning egg proteins, gluten or even requirements for vegan consumers. Several studies have been performed in this line, replacing eggs with milk serum, different mucilages obtained from legumes or some gums, etc. In conclusion, many papers have been published showing the possibility of successfully replacing (both at technological and sensory levels) less healthy ingredients with others that are nutritionally better. The challenge now is to combine these better components in a given product, as well as to evaluate possible interactions among them. | es_ES |
dc.description.sponsorship | This work was supported by the Generalitat Valenciana (AICO/2017/043). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Foods | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bakery | es_ES |
dc.subject | Sweeteners | es_ES |
dc.subject | Fat | es_ES |
dc.subject | Protein | es_ES |
dc.subject | Fiber | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/foods8120660 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F043/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Peris Tortajada, M.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD. (2019). From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods. 8(12):1-24. https://doi.org/10.3390/foods8120660 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/foods8120660 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 31835412 | es_ES |
dc.identifier.pmcid | PMC6963723 | es_ES |
dc.relation.pasarela | S\398722 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Eswaran, S., Muir, J., & Chey, W. D. (2013). Fiber and Functional Gastrointestinal Disorders. American Journal of Gastroenterology, 108(5), 718-727. doi:10.1038/ajg.2013.63 | es_ES |
dc.description.references | Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106-128. doi:10.1016/j.tifs.2017.07.003 | es_ES |
dc.description.references | Rohm, H., Schäper, C., & Zahn, S. (2018). Interesterified fats in chocolate and bakery products: A concise review. LWT, 87, 379-384. doi:10.1016/j.lwt.2017.08.076 | es_ES |
dc.description.references | Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food and Chemical Toxicology, 40(10), 1375-1381. doi:10.1016/s0278-6915(02)00105-9 | es_ES |
dc.description.references | Lu, Y., Levin, G. V., & Donner, T. W. (2007). Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity and Metabolism, 0(0), 071018044430010-??? doi:10.1111/j.1463-1326.2007.00799.x | es_ES |
dc.description.references | Rubio-Arraez, S., Benavent, C., Ortolá, M. D., & Castelló, M. L. (2018). Influence of Low Glycaemic Index Sweeteners on Antioxidant, Sensory, Mechanical, and Physicochemical Properties of a Watermelon Jelly. Journal of Food Quality, 2018, 1-7. doi:10.1155/2018/8412017 | es_ES |
dc.description.references | Rodríguez, A., Magan, N., & Medina, A. (2016). Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products. International Journal of Food Microbiology, 231, 42-47. doi:10.1016/j.ijfoodmicro.2016.04.031 | es_ES |
dc.description.references | Gasmalla, M. A. A., Yang, R., & Hua, X. (2014). Stevia rebaudiana Bertoni: An alternative Sugar Replacer and Its Application in Food Industry. Food Engineering Reviews, 6(4), 150-162. doi:10.1007/s12393-014-9080-0 | es_ES |
dc.description.references | Trattner, S., Becker, W., Wretling, S., Öhrvik, V., & Mattisson, I. (2015). Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids. Food Chemistry, 175, 423-430. doi:10.1016/j.foodchem.2014.11.145 | es_ES |
dc.description.references | Esfahani, A., Wong, J. M. W., Mirrahimi, A., Villa, C. R., & Kendall, C. W. C. (2011). The application of the glycemic index and glycemic load in weight loss: A review of the clinical evidence. IUBMB Life, 63(1), 7-13. doi:10.1002/iub.418 | es_ES |
dc.description.references | Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., & Yang, Y. (2017). In vivo study of medical and biological properties of functional bakery products with the addition of pumpkin flour. Bioactive Carbohydrates and Dietary Fibre, 12, 20-24. doi:10.1016/j.bcdf.2017.09.001 | es_ES |
dc.description.references | Martinez-Saez, N., García, A. T., Pérez, I. D., Rebollo-Hernanz, M., Mesías, M., Morales, F. J., … del Castillo, M. D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 216, 114-122. doi:10.1016/j.foodchem.2016.07.173 | es_ES |
dc.description.references | Abdel-Aal, E.-S. M., & Rabalski, I. (2013). Effect of baking on free and bound phenolic acids in wholegrain bakery products. Journal of Cereal Science, 57(3), 312-318. doi:10.1016/j.jcs.2012.12.001 | es_ES |
dc.description.references | Purlis, E. (2010). Browning development in bakery products – A review. Journal of Food Engineering, 99(3), 239-249. doi:10.1016/j.jfoodeng.2010.03.008 | es_ES |
dc.description.references | Liang, S., & Were, L. M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions. Food Chemistry, 241, 135-142. doi:10.1016/j.foodchem.2017.08.084 | es_ES |
dc.description.references | Karp, S., Wyrwisz, J., Kurek, M., & Wierzbicka, A. (2016). Physical properties of muffins sweetened with steviol glycosides as the sucrose replacement. Food Science and Biotechnology, 25(6), 1591-1596. doi:10.1007/s10068-016-0245-x | es_ES |
dc.description.references | Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026 | es_ES |
dc.description.references | Patel, S., & Goyal, A. (2010). Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology, 27(5), 1119-1128. doi:10.1007/s11274-010-0558-5 | es_ES |
dc.description.references | Tavera-Quiroz, M. J., Urriza, M., Pinotti, A., & Bertola, N. (2015). Baked snack from green apples formulated with the addition of isomalt. LWT - Food Science and Technology, 62(2), 1004-1010. doi:10.1016/j.lwt.2015.02.009 | es_ES |
dc.description.references | Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617 | es_ES |
dc.description.references | Ghosh, S., & Sudha, M. L. (2011). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372-379. doi:10.3109/09637486.2011.627846 | es_ES |
dc.description.references | Regnat, K., Mach, R. L., & Mach-Aigner, A. R. (2017). Erythritol as sweetener—wherefrom and whereto? Applied Microbiology and Biotechnology, 102(2), 587-595. doi:10.1007/s00253-017-8654-1 | es_ES |
dc.description.references | Singla, V., & Chakkaravarthi, S. (2017). Applications of prebiotics in food industry: A review. Food Science and Technology International, 23(8), 649-667. doi:10.1177/1082013217721769 | es_ES |
dc.description.references | Rios, R. V., Pessanha, M. D. F., Almeida, P. F. de, Viana, C. L., & Lannes, S. C. da S. (2014). Application of fats in some food products. Food Science and Technology (Campinas), 34(1), 3-15. doi:10.1590/s0101-20612014000100001 | es_ES |
dc.description.references | Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science & Technology, 30(1), 6-15. doi:10.1016/j.tifs.2013.01.001 | es_ES |
dc.description.references | Zettel, V., & Hitzmann, B. (2016). Chia (Salvia hispanicaL.) as fat replacer in sweet pan breads. International Journal of Food Science & Technology, 51(6), 1425-1432. doi:10.1111/ijfs.13110 | es_ES |
dc.description.references | Doménech-Asensi, G., Merola, N., López-Fernández, A., Ros-Berruezo, G., & Frontela-Saseta, C. (2015). Influence of the reformulation of ingredients in bakery products on healthy characteristics and acceptability of consumers. International Journal of Food Sciences and Nutrition, 67(1), 74-82. doi:10.3109/09637486.2015.1126565 | es_ES |
dc.description.references | Umesha, S. S., Manohar, R. S., Indiramma, A. R., Akshitha, S., & Naidu, K. A. (2015). Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. LWT - Food Science and Technology, 62(1), 654-661. doi:10.1016/j.lwt.2014.02.018 | es_ES |
dc.description.references | Rajiv, J., Indrani, D., Prabhasankar, P., & Rao, G. V. (2011). Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum). Journal of Food Science and Technology, 49(5), 587-593. doi:10.1007/s13197-011-0307-2 | es_ES |
dc.description.references | Mesías, M., Holgado, F., Márquez-Ruiz, G., & Morales, F. J. (2016). Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT, 73, 528-535. doi:10.1016/j.lwt.2016.06.056 | es_ES |
dc.description.references | Luna Pizarro, P., Almeida, E. L., Sammán, N. C., & Chang, Y. K. (2013). Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. LWT - Food Science and Technology, 54(1), 73-79. doi:10.1016/j.lwt.2013.04.017 | es_ES |
dc.description.references | Coelho, M. S., & Salas-Mellado, M. de las M. (2015). Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT - Food Science and Technology, 60(2), 729-736. doi:10.1016/j.lwt.2014.10.033 | es_ES |
dc.description.references | Borneo, R., Aguirre, A., & León, A. E. (2010). Chia (Salvia hispanica L) Gel Can Be Used as Egg or Oil Replacer in Cake Formulations. Journal of the American Dietetic Association, 110(6), 946-949. doi:10.1016/j.jada.2010.03.011 | es_ES |
dc.description.references | Fernandes, S. S., & Salas-Mellado, M. de las M. (2017). Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, 227, 237-244. doi:10.1016/j.foodchem.2017.01.075 | es_ES |
dc.description.references | Oliveira de Souza, N. C., de Lacerda de Oliveira, L., Rodrigues de Alencar, E., Moreira, G. P., Santos Leandro, E. dos, Ginani, V. C., & Zandonadi, R. P. (2018). Textural, physical and sensory impacts of the use of green banana puree to replace fat in reduced sugar pound cakes. LWT, 89, 617-623. doi:10.1016/j.lwt.2017.11.050 | es_ES |
dc.description.references | Tarancón, P., Fiszman, S. M., Salvador, A., & Tárrega, A. (2013). Formulating biscuits with healthier fats. Consumer profiling of textural and flavour sensations during consumption. Food Research International, 53(1), 134-140. doi:10.1016/j.foodres.2013.03.053 | es_ES |
dc.description.references | Chugh, B., Singh, G., & Kumbhar, B. K. (2013). Development of Low-Fat Soft Dough Biscuits Using Carbohydrate-Based Fat Replacers. International Journal of Food Science, 2013, 1-12. doi:10.1155/2013/576153 | es_ES |
dc.description.references | Martínez-Cervera, S., Salvador, A., & Sanz, T. (2015). Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT - Food Science and Technology, 63(2), 1083-1090. doi:10.1016/j.lwt.2015.04.067 | es_ES |
dc.description.references | Colla, K., & Gamlath, S. (2015). Inulin and maltodextrin can replace fat in baked savoury legume snacks. International Journal of Food Science & Technology, 50(10), 2297-2305. doi:10.1111/ijfs.12892 | es_ES |
dc.description.references | Forker, A., Zahn, S., & Rohm, H. (2011). A Combination of Fat Replacers Enables the Production of Fat-reduced Shortdough Biscuits with High-sensory quality. Food and Bioprocess Technology, 5(6), 2497-2505. doi:10.1007/s11947-011-0536-4 | es_ES |
dc.description.references | Aggarwal, D., Sabikhi, L., & Sathish Kumar, M. H. (2016). Formulation of reduced-calorie biscuits using artificial sweeteners and fat replacer with dairy–multigrain approach. NFS Journal, 2, 1-7. doi:10.1016/j.nfs.2015.10.001 | es_ES |
dc.description.references | Singh, A., & Kumar, P. (2017). Gluten free approach in fat and sugar amended biscuits: A healthy concern for obese and diabetic individuals. Journal of Food Processing and Preservation, 42(3), e13546. doi:10.1111/jfpp.13546 | es_ES |
dc.description.references | LAGUNA, L., VARELA, P., SALVADOR, A., SANZ, T., & FISZMAN, S. M. (2011). BALANCING TEXTURE AND OTHER SENSORY FEATURES IN REDUCED FAT SHORT-DOUGH BISCUITS. Journal of Texture Studies, 43(3), 235-245. doi:10.1111/j.1745-4603.2011.00333.x | es_ES |
dc.description.references | Błońska, A., Marzec, A., & Błaszczyk, A. (2014). Instrumental Evaluation of Acoustic and Mechanical Texture Properties of Short-Dough Biscuits with Different Content of Fat and Inulin. Journal of Texture Studies, 45(3), 226-234. doi:10.1111/jtxs.12068 | es_ES |
dc.description.references | Giarnetti, M., Paradiso, V. M., Caponio, F., Summo, C., & Pasqualone, A. (2015). Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT - Food Science and Technology, 63(1), 339-345. doi:10.1016/j.lwt.2015.03.063 | es_ES |
dc.description.references | Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods, 19, 868-881. doi:10.1016/j.jff.2014.06.029 | es_ES |
dc.description.references | O’Dwyer, S. P., O’Beirne, D., Eidhin, D. N., & O’Kennedy, B. T. (2013). Effects of emulsification and microencapsulation on the oxidative stability of camelina and sunflower oils. Journal of Microencapsulation, 30(5), 451-459. doi:10.3109/02652048.2012.752533 | es_ES |
dc.description.references | Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037 | es_ES |
dc.description.references | Felisberto, M. H. F., Wahanik, A. L., Gomes-Ruffi, C. R., Clerici, M. T. P. S., Chang, Y. K., & Steel, C. J. (2015). Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Science and Technology, 63(2), 1049-1055. doi:10.1016/j.lwt.2015.03.114 | es_ES |
dc.description.references | Quiles, A., Llorca, E., Schmidt, C., Reißner, A.-M., Struck, S., Rohm, H., & Hernando, I. (2018). Use of berry pomace to replace flour, fat or sugar in cakes. International Journal of Food Science & Technology, 53(6), 1579-1587. doi:10.1111/ijfs.13765 | es_ES |
dc.description.references | Othman, N. A., Abdul Manaf, M., Harith, S., & Wan Ishak, W. R. (2018). Influence of Avocado Purée as a Fat Replacer on Nutritional, Fatty Acid, and Organoleptic Properties of Low-Fat Muffins. Journal of the American College of Nutrition, 37(7), 583-588. doi:10.1080/07315724.2018.1451408 | es_ES |
dc.description.references | ROMANCHIK-CERPOVICZ, J. E., TILMON, R. W., & BALDREE, K. A. (2002). Moisture Retention and Consumer Acceptability of Chocolate Bar Cookies Prepared With Okra Gum as a Fat Ingredient Substitute. Journal of the American Dietetic Association, 102(9), 1301-1303. doi:10.1016/s0002-8223(02)90287-7 | es_ES |
dc.description.references | GEERA, B., REILING, J. A., HUTCHISON, M. A., RYBAK, D., SANTHA, B., & RATNAYAKE, W. S. (2011). A COMPREHENSIVE EVALUATION OF EGG AND EGG REPLACERS ON THE PRODUCT QUALITY OF MUFFINS. Journal of Food Quality, 34(5), 333-342. doi:10.1111/j.1745-4557.2011.00400.x | es_ES |
dc.description.references | Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2008). Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality. Food and Bioprocess Technology, 3(4), 577-585. doi:10.1007/s11947-008-0098-2 | es_ES |
dc.description.references | Chung, H.-J., Cho, A., & Lim, S.-T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Science and Technology, 57(1), 260-266. doi:10.1016/j.lwt.2014.01.018 | es_ES |
dc.description.references | Bourekoua, H., Benatallah, L., Zidoune, M. N., & Rosell, C. M. (2016). Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. LWT, 73, 342-350. doi:10.1016/j.lwt.2016.06.032 | es_ES |
dc.description.references | Skendi, A., Mouselemidou, P., Papageorgiou, M., & Papastergiadis, E. (2018). Effect of acorn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chemistry, 253, 119-126. doi:10.1016/j.foodchem.2018.01.144 | es_ES |
dc.description.references | Pasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. doi:10.1016/j.heliyon.2019.e02242 | es_ES |
dc.description.references | Velázquez, N., Sánchez, H., Osella, C., & Santiago, L. G. (2011). Using white sorghum flour for gluten-free breadmaking. International Journal of Food Sciences and Nutrition, 63(4), 491-497. doi:10.3109/09637486.2011.636734 | es_ES |
dc.description.references | Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT - Food Science and Technology, 65, 637-644. doi:10.1016/j.lwt.2015.08.063 | es_ES |
dc.description.references | Dayakar Rao, B., Anis, M., Kalpana, K., Sunooj, K. V., Patil, J. V., & Ganesh, T. (2016). Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8-13. doi:10.1016/j.lwt.2015.11.033 | es_ES |
dc.description.references | Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75, 158-164. doi:10.1016/j.jcs.2017.04.004 | es_ES |
dc.description.references | Rai, S., Kaur, A., & Singh, B. (2011). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785-789. doi:10.1007/s13197-011-0547-1 | es_ES |
dc.description.references | Chauhan, A., Saxena, D. C., & Singh, S. (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food & Agriculture, 2(1). doi:10.1080/23311932.2015.1125773 | es_ES |
dc.description.references | Chauhan, A., Saxena, D. C., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63(2), 939-945. doi:10.1016/j.lwt.2015.03.115 | es_ES |
dc.description.references | Inglett, G. E., Chen, D., & Liu, S. X. (2015). Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT - Food Science and Technology, 63(1), 214-220. doi:10.1016/j.lwt.2015.03.056 | es_ES |
dc.description.references | Yamsaengsung, R., Berghofer, E., & Schoenlechner, R. (2012). Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. International Journal of Food Science & Technology, 47(10), 2221-2227. doi:10.1111/j.1365-2621.2012.03092.x | es_ES |
dc.description.references | Brito, I. L., de Souza, E. L., Felex, S. S. S., Madruga, M. S., Yamashita, F., & Magnani, M. (2014). Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. Journal of Food Science and Technology, 52(9), 5866-5873. doi:10.1007/s13197-014-1659-1 | es_ES |
dc.description.references | Watanabe, K., Kawanishi-Asaoka, M., Myojin, C., Awata, S., Ofusa, K., & Kodama, K. (2014). Amino Acid Composition, Oxidative Stability, and Consumer Acceptance of Cookies Made with Quinoa Flour. Food Science and Technology Research, 20(3), 687-691. doi:10.3136/fstr.20.687 | es_ES |
dc.description.references | Bick, M. A., Fogaça, A. de O., & Storck, C. R. (2014). Biscoitos com diferentes concentrações de farinha de quinoa em substituição parcial à farinha de trigo. Brazilian Journal of Food Technology, 17(2), 121-129. doi:10.1590/bjft.2014.015 | es_ES |
dc.description.references | Jan, U., Gani, A., Ahmad, M., Shah, U., Baba, W. N., Masoodi, F. A., … Wani, S. M. (2015). Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties. Journal of Food Science and Technology, 52(10), 6334-6344. doi:10.1007/s13197-015-1773-8 | es_ES |
dc.description.references | Sakač, M., Pestorić, M., Mišan, A., Nedeljković, N., … Jambrec, D. (2015). Antioxidant Capacity, Mineral Content and Sensory Properties of Gluten-Free Rice and Buckwheat Cookies. Food Technology and Biotechnology, 53(1), 38-47. doi:10.17113/ftb.53.01.15.3633 | es_ES |
dc.description.references | Dapčević Hadnađev, T. R., Torbica, A. M., & Hadnađev, M. S. (2012). Influence of Buckwheat Flour and Carboxymethyl Cellulose on Rheological Behaviour and Baking Performance of Gluten-Free Cookie Dough. Food and Bioprocess Technology, 6(7), 1770-1781. doi:10.1007/s11947-012-0841-6 | es_ES |
dc.description.references | Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., & Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2), 476-481. doi:10.1016/j.jcs.2012.04.012 | es_ES |
dc.description.references | Cheng, Y. F., & Bhat, R. (2016). Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Bioscience, 14, 54-61. doi:10.1016/j.fbio.2016.03.002 | es_ES |
dc.description.references | Mancebo, C. M., Rodriguez, P., & Gómez, M. (2016). Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT - Food Science and Technology, 67, 127-132. doi:10.1016/j.lwt.2015.11.045 | es_ES |
dc.description.references | Pasqualone, A., De Angelis, D., Squeo, G., Difonzo, G., Caponio, F., & Summo, C. (2019). The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods, 8(10), 504. doi:10.3390/foods8100504 | es_ES |
dc.description.references | De la Hera, E., Ruiz-París, E., Oliete, B., & Gómez, M. (2012). Studies of the quality of cakes made with wheat-lentil composite flours. LWT, 49(1), 48-54. doi:10.1016/j.lwt.2012.05.009 | es_ES |
dc.description.references | Jones, J. M. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutrition Journal, 13(1). doi:10.1186/1475-2891-13-34 | es_ES |
dc.description.references | Grundy, M. M.-L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., & Ellis, P. R. (2016). Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 116(5), 816-833. doi:10.1017/s0007114516002610 | es_ES |
dc.description.references | Hollmann, J., Themeier, H., Neese, U., & Lindhauer, M. G. (2013). Dietary fibre fractions in cereal foods measured by a new integrated AOAC method. Food Chemistry, 140(3), 586-589. doi:10.1016/j.foodchem.2012.12.005 | es_ES |
dc.description.references | Sirbu, A., & Arghire, C. (2017). Functional bread: Effect of inulin-type products addition on dough rheology and bread quality. Journal of Cereal Science, 75, 220-227. doi:10.1016/j.jcs.2017.03.029 | es_ES |
dc.description.references | Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007 | es_ES |
dc.description.references | Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. doi:10.1016/j.foodchem.2017.05.033 | es_ES |
dc.description.references | Bingham, S., & Riboli, E. (2004). Diet and cancer — the European Prospective Investigation into Cancer and Nutrition. Nature Reviews Cancer, 4(3), 206-215. doi:10.1038/nrc1298 | es_ES |
dc.description.references | Shukla, K., & Srivastava, S. (2011). Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. Journal of Food Science and Technology, 51(3), 527-534. doi:10.1007/s13197-011-0530-x | es_ES |
dc.description.references | Mudgil, D., Barak, S., & Khatkar, B. S. (2016). Optimization of bread firmness, specific loaf volume and sensory acceptability of bread with soluble fiber and different water levels. Journal of Cereal Science, 70, 186-191. doi:10.1016/j.jcs.2016.06.009 | es_ES |
dc.description.references | Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010 | es_ES |
dc.description.references | Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066-1083. doi:10.1016/j.foodres.2016.08.016 | es_ES |
dc.description.references | Ateş, G., & Elmacı, Y. (2018). Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT, 90, 519-525. doi:10.1016/j.lwt.2018.01.003 | es_ES |
dc.description.references | Martínez-Cervera, S., Salvador, A., Muguerza, B., Moulay, L., & Fiszman, S. M. (2011). Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT - Food Science and Technology, 44(3), 729-736. doi:10.1016/j.lwt.2010.06.035 | es_ES |
dc.description.references | Segundo, C., Román, L., Gómez, M., & Martínez, M. M. (2017). Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes. Food Chemistry, 219, 240-248. doi:10.1016/j.foodchem.2016.09.143 | es_ES |
dc.description.references | Noort, M. W. J., Mattila, O., Katina, K., & van der Kamp, J. W. (2017). HealthBread: Wholegrain and high fibre breads with optimised textural quality. Journal of Cereal Science, 78, 57-65. doi:10.1016/j.jcs.2017.03.009 | es_ES |
dc.description.references | Talens, C., Álvarez-Sabatel, S., Rios, Y., & Rodríguez, R. (2017). Effect of a new microwave-dried orange fibre ingredient vs. a commercial citrus fibre on texture and sensory properties of gluten-free muffins. Innovative Food Science & Emerging Technologies, 44, 83-88. doi:10.1016/j.ifset.2017.07.011 | es_ES |
dc.description.references | Verdú, S., Barat, J. M., & Grau, R. (2017). Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT, 84, 419-425. doi:10.1016/j.lwt.2017.06.007 | es_ES |
dc.description.references | Silva, F. de O., Miranda, T. G., Justo, T., Frasão, B. da S., Conte-Junior, C. A., Monteiro, M., & Perrone, D. (2018). Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT, 90, 224-231. doi:10.1016/j.lwt.2017.12.035 | es_ES |
dc.description.references | Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012 | es_ES |
dc.description.references | Laguna, L., Primo-Martín, C., Varela, P., Salvador, A., & Sanz, T. (2014). HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT - Food Science and Technology, 56(2), 494-501. doi:10.1016/j.lwt.2013.12.025 | es_ES |
dc.description.references | Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:10.1016/j.lwt.2017.11.024 | es_ES |
dc.description.references | Arufe, S., Della Valle, G., Chiron, H., Chenlo, F., Sineiro, J., & Moreira, R. (2017). Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 244(1), 1-10. doi:10.1007/s00217-017-2929-8 | es_ES |
dc.description.references | Różyło, R., Hameed Hassoon, W., Gawlik-Dziki, U., Siastała, M., & Dziki, D. (2016). Study on the physical and antioxidant properties of gluten-free bread with brown algae. CyTA - Journal of Food, 15(2), 196-203. doi:10.1080/19476337.2016.1236839 | es_ES |
dc.description.references | Kerch, G., Zicans, J., & Meri, R. M. (2010). The effect of chitosan oligosaccharides on bread staling. Journal of Cereal Science, 52(3), 491-495. doi:10.1016/j.jcs.2010.08.007 | es_ES |
dc.description.references | Mogol, B. A., & Gökmen, V. (2016). Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food & Function, 7(8), 3431-3436. doi:10.1039/c6fo00755d | es_ES |
dc.description.references | Vici, G., Belli, L., Biondi, M., & Polzonetti, V. (2016). Gluten free diet and nutrient deficiencies: A review. Clinical Nutrition, 35(6), 1236-1241. doi:10.1016/j.clnu.2016.05.002 | es_ES |