- -

From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products

Mostrar el registro completo del ítem

Peris Tortajada, M.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD. (2019). From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods. 8(12):1-24. https://doi.org/10.3390/foods8120660

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156523

Ficheros en el ítem

Metadatos del ítem

Título: From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products
Autor: Peris Tortajada, Miguel Rubio-Arraez, Susana Castelló Gómez, María Luisa Ortolá Ortolá, Mª Dolores
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Due to the growing interest in improving the nutritional profile of bakery products, we have dealt with the most recent and relevant contributions regarding potential replacements for carbohydrates, proteins, and fats. ...[+]
Palabras clave: Bakery , Sweeteners , Fat , Protein , Fiber
Derechos de uso: Reconocimiento (by)
Fuente:
Foods. (issn: 2304-8158 )
DOI: 10.3390/foods8120660
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/foods8120660
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F043/
Agradecimientos:
This work was supported by the Generalitat Valenciana (AICO/2017/043).
Tipo: Artículo

References

Eswaran, S., Muir, J., & Chey, W. D. (2013). Fiber and Functional Gastrointestinal Disorders. American Journal of Gastroenterology, 108(5), 718-727. doi:10.1038/ajg.2013.63

Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106-128. doi:10.1016/j.tifs.2017.07.003

Rohm, H., Schäper, C., & Zahn, S. (2018). Interesterified fats in chocolate and bakery products: A concise review. LWT, 87, 379-384. doi:10.1016/j.lwt.2017.08.076 [+]
Eswaran, S., Muir, J., & Chey, W. D. (2013). Fiber and Functional Gastrointestinal Disorders. American Journal of Gastroenterology, 108(5), 718-727. doi:10.1038/ajg.2013.63

Martins, Z. E., Pinho, O., & Ferreira, I. M. P. L. V. O. (2017). Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology, 67, 106-128. doi:10.1016/j.tifs.2017.07.003

Rohm, H., Schäper, C., & Zahn, S. (2018). Interesterified fats in chocolate and bakery products: A concise review. LWT, 87, 379-384. doi:10.1016/j.lwt.2017.08.076

Lina, B. A. R., Jonker, D., & Kozianowski, G. (2002). Isomaltulose (Palatinose®): a review of biological and toxicological studies. Food and Chemical Toxicology, 40(10), 1375-1381. doi:10.1016/s0278-6915(02)00105-9

Lu, Y., Levin, G. V., & Donner, T. W. (2007). Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity and Metabolism, 0(0), 071018044430010-??? doi:10.1111/j.1463-1326.2007.00799.x

Rubio-Arraez, S., Benavent, C., Ortolá, M. D., & Castelló, M. L. (2018). Influence of Low Glycaemic Index Sweeteners on Antioxidant, Sensory, Mechanical, and Physicochemical Properties of a Watermelon Jelly. Journal of Food Quality, 2018, 1-7. doi:10.1155/2018/8412017

Rodríguez, A., Magan, N., & Medina, A. (2016). Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products. International Journal of Food Microbiology, 231, 42-47. doi:10.1016/j.ijfoodmicro.2016.04.031

Gasmalla, M. A. A., Yang, R., & Hua, X. (2014). Stevia rebaudiana Bertoni: An alternative Sugar Replacer and Its Application in Food Industry. Food Engineering Reviews, 6(4), 150-162. doi:10.1007/s12393-014-9080-0

Trattner, S., Becker, W., Wretling, S., Öhrvik, V., & Mattisson, I. (2015). Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids. Food Chemistry, 175, 423-430. doi:10.1016/j.foodchem.2014.11.145

Esfahani, A., Wong, J. M. W., Mirrahimi, A., Villa, C. R., & Kendall, C. W. C. (2011). The application of the glycemic index and glycemic load in weight loss: A review of the clinical evidence. IUBMB Life, 63(1), 7-13. doi:10.1002/iub.418

Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., & Yang, Y. (2017). In vivo study of medical and biological properties of functional bakery products with the addition of pumpkin flour. Bioactive Carbohydrates and Dietary Fibre, 12, 20-24. doi:10.1016/j.bcdf.2017.09.001

Martinez-Saez, N., García, A. T., Pérez, I. D., Rebollo-Hernanz, M., Mesías, M., Morales, F. J., … del Castillo, M. D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 216, 114-122. doi:10.1016/j.foodchem.2016.07.173

Abdel-Aal, E.-S. M., & Rabalski, I. (2013). Effect of baking on free and bound phenolic acids in wholegrain bakery products. Journal of Cereal Science, 57(3), 312-318. doi:10.1016/j.jcs.2012.12.001

Purlis, E. (2010). Browning development in bakery products – A review. Journal of Food Engineering, 99(3), 239-249. doi:10.1016/j.jfoodeng.2010.03.008

Liang, S., & Were, L. M. (2018). Chlorogenic acid oxidation-induced greening of sunflower butter cookies as a function of different sweeteners and storage conditions. Food Chemistry, 241, 135-142. doi:10.1016/j.foodchem.2017.08.084

Karp, S., Wyrwisz, J., Kurek, M., & Wierzbicka, A. (2016). Physical properties of muffins sweetened with steviol glycosides as the sucrose replacement. Food Science and Biotechnology, 25(6), 1591-1596. doi:10.1007/s10068-016-0245-x

Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026

Patel, S., & Goyal, A. (2010). Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology, 27(5), 1119-1128. doi:10.1007/s11274-010-0558-5

Tavera-Quiroz, M. J., Urriza, M., Pinotti, A., & Bertola, N. (2015). Baked snack from green apples formulated with the addition of isomalt. LWT - Food Science and Technology, 62(2), 1004-1010. doi:10.1016/j.lwt.2015.02.009

Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617

Ghosh, S., & Sudha, M. L. (2011). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372-379. doi:10.3109/09637486.2011.627846

Regnat, K., Mach, R. L., & Mach-Aigner, A. R. (2017). Erythritol as sweetener—wherefrom and whereto? Applied Microbiology and Biotechnology, 102(2), 587-595. doi:10.1007/s00253-017-8654-1

Singla, V., & Chakkaravarthi, S. (2017). Applications of prebiotics in food industry: A review. Food Science and Technology International, 23(8), 649-667. doi:10.1177/1082013217721769

Rios, R. V., Pessanha, M. D. F., Almeida, P. F. de, Viana, C. L., & Lannes, S. C. da S. (2014). Application of fats in some food products. Food Science and Technology (Campinas), 34(1), 3-15. doi:10.1590/s0101-20612014000100001

Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science & Technology, 30(1), 6-15. doi:10.1016/j.tifs.2013.01.001

Zettel, V., & Hitzmann, B. (2016). Chia (Salvia hispanicaL.) as fat replacer in sweet pan breads. International Journal of Food Science & Technology, 51(6), 1425-1432. doi:10.1111/ijfs.13110

Doménech-Asensi, G., Merola, N., López-Fernández, A., Ros-Berruezo, G., & Frontela-Saseta, C. (2015). Influence of the reformulation of ingredients in bakery products on healthy characteristics and acceptability of consumers. International Journal of Food Sciences and Nutrition, 67(1), 74-82. doi:10.3109/09637486.2015.1126565

Umesha, S. S., Manohar, R. S., Indiramma, A. R., Akshitha, S., & Naidu, K. A. (2015). Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: Physical, sensory and storage quality characteristics of biscuits. LWT - Food Science and Technology, 62(1), 654-661. doi:10.1016/j.lwt.2014.02.018

Rajiv, J., Indrani, D., Prabhasankar, P., & Rao, G. V. (2011). Rheology, fatty acid profile and storage characteristics of cookies as influenced by flax seed (Linum usitatissimum). Journal of Food Science and Technology, 49(5), 587-593. doi:10.1007/s13197-011-0307-2

Mesías, M., Holgado, F., Márquez-Ruiz, G., & Morales, F. J. (2016). Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT, 73, 528-535. doi:10.1016/j.lwt.2016.06.056

Luna Pizarro, P., Almeida, E. L., Sammán, N. C., & Chang, Y. K. (2013). Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. LWT - Food Science and Technology, 54(1), 73-79. doi:10.1016/j.lwt.2013.04.017

Coelho, M. S., & Salas-Mellado, M. de las M. (2015). Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT - Food Science and Technology, 60(2), 729-736. doi:10.1016/j.lwt.2014.10.033

Borneo, R., Aguirre, A., & León, A. E. (2010). Chia (Salvia hispanica L) Gel Can Be Used as Egg or Oil Replacer in Cake Formulations. Journal of the American Dietetic Association, 110(6), 946-949. doi:10.1016/j.jada.2010.03.011

Fernandes, S. S., & Salas-Mellado, M. de las M. (2017). Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, 227, 237-244. doi:10.1016/j.foodchem.2017.01.075

Oliveira de Souza, N. C., de Lacerda de Oliveira, L., Rodrigues de Alencar, E., Moreira, G. P., Santos Leandro, E. dos, Ginani, V. C., & Zandonadi, R. P. (2018). Textural, physical and sensory impacts of the use of green banana puree to replace fat in reduced sugar pound cakes. LWT, 89, 617-623. doi:10.1016/j.lwt.2017.11.050

Tarancón, P., Fiszman, S. M., Salvador, A., & Tárrega, A. (2013). Formulating biscuits with healthier fats. Consumer profiling of textural and flavour sensations during consumption. Food Research International, 53(1), 134-140. doi:10.1016/j.foodres.2013.03.053

Chugh, B., Singh, G., & Kumbhar, B. K. (2013). Development of Low-Fat Soft Dough Biscuits Using Carbohydrate-Based Fat Replacers. International Journal of Food Science, 2013, 1-12. doi:10.1155/2013/576153

Martínez-Cervera, S., Salvador, A., & Sanz, T. (2015). Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT - Food Science and Technology, 63(2), 1083-1090. doi:10.1016/j.lwt.2015.04.067

Colla, K., & Gamlath, S. (2015). Inulin and maltodextrin can replace fat in baked savoury legume snacks. International Journal of Food Science & Technology, 50(10), 2297-2305. doi:10.1111/ijfs.12892

Forker, A., Zahn, S., & Rohm, H. (2011). A Combination of Fat Replacers Enables the Production of Fat-reduced Shortdough Biscuits with High-sensory quality. Food and Bioprocess Technology, 5(6), 2497-2505. doi:10.1007/s11947-011-0536-4

Aggarwal, D., Sabikhi, L., & Sathish Kumar, M. H. (2016). Formulation of reduced-calorie biscuits using artificial sweeteners and fat replacer with dairy–multigrain approach. NFS Journal, 2, 1-7. doi:10.1016/j.nfs.2015.10.001

Singh, A., & Kumar, P. (2017). Gluten free approach in fat and sugar amended biscuits: A healthy concern for obese and diabetic individuals. Journal of Food Processing and Preservation, 42(3), e13546. doi:10.1111/jfpp.13546

LAGUNA, L., VARELA, P., SALVADOR, A., SANZ, T., & FISZMAN, S. M. (2011). BALANCING TEXTURE AND OTHER SENSORY FEATURES IN REDUCED FAT SHORT-DOUGH BISCUITS. Journal of Texture Studies, 43(3), 235-245. doi:10.1111/j.1745-4603.2011.00333.x

Błońska, A., Marzec, A., & Błaszczyk, A. (2014). Instrumental Evaluation of Acoustic and Mechanical Texture Properties of Short-Dough Biscuits with Different Content of Fat and Inulin. Journal of Texture Studies, 45(3), 226-234. doi:10.1111/jtxs.12068

Giarnetti, M., Paradiso, V. M., Caponio, F., Summo, C., & Pasqualone, A. (2015). Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT - Food Science and Technology, 63(1), 339-345. doi:10.1016/j.lwt.2015.03.063

Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods, 19, 868-881. doi:10.1016/j.jff.2014.06.029

O’Dwyer, S. P., O’Beirne, D., Eidhin, D. N., & O’Kennedy, B. T. (2013). Effects of emulsification and microencapsulation on the oxidative stability of camelina and sunflower oils. Journal of Microencapsulation, 30(5), 451-459. doi:10.3109/02652048.2012.752533

Muñoz, L. A., Cobos, A., Diaz, O., & Aguilera, J. M. (2012). Chia seeds: Microstructure, mucilage extraction and hydration. Journal of Food Engineering, 108(1), 216-224. doi:10.1016/j.jfoodeng.2011.06.037

Felisberto, M. H. F., Wahanik, A. L., Gomes-Ruffi, C. R., Clerici, M. T. P. S., Chang, Y. K., & Steel, C. J. (2015). Use of chia (Salvia hispanica L.) mucilage gel to reduce fat in pound cakes. LWT - Food Science and Technology, 63(2), 1049-1055. doi:10.1016/j.lwt.2015.03.114

Quiles, A., Llorca, E., Schmidt, C., Reißner, A.-M., Struck, S., Rohm, H., & Hernando, I. (2018). Use of berry pomace to replace flour, fat or sugar in cakes. International Journal of Food Science & Technology, 53(6), 1579-1587. doi:10.1111/ijfs.13765

Othman, N. A., Abdul Manaf, M., Harith, S., & Wan Ishak, W. R. (2018). Influence of Avocado Purée as a Fat Replacer on Nutritional, Fatty Acid, and Organoleptic Properties of Low-Fat Muffins. Journal of the American College of Nutrition, 37(7), 583-588. doi:10.1080/07315724.2018.1451408

ROMANCHIK-CERPOVICZ, J. E., TILMON, R. W., & BALDREE, K. A. (2002). Moisture Retention and Consumer Acceptability of Chocolate Bar Cookies Prepared With Okra Gum as a Fat Ingredient Substitute. Journal of the American Dietetic Association, 102(9), 1301-1303. doi:10.1016/s0002-8223(02)90287-7

GEERA, B., REILING, J. A., HUTCHISON, M. A., RYBAK, D., SANTHA, B., & RATNAYAKE, W. S. (2011). A COMPREHENSIVE EVALUATION OF EGG AND EGG REPLACERS ON THE PRODUCT QUALITY OF MUFFINS. Journal of Food Quality, 34(5), 333-342. doi:10.1111/j.1745-4557.2011.00400.x

Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2008). Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality. Food and Bioprocess Technology, 3(4), 577-585. doi:10.1007/s11947-008-0098-2

Chung, H.-J., Cho, A., & Lim, S.-T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Science and Technology, 57(1), 260-266. doi:10.1016/j.lwt.2014.01.018

Bourekoua, H., Benatallah, L., Zidoune, M. N., & Rosell, C. M. (2016). Developing gluten free bakery improvers by hydrothermal treatment of rice and corn flours. LWT, 73, 342-350. doi:10.1016/j.lwt.2016.06.032

Skendi, A., Mouselemidou, P., Papageorgiou, M., & Papastergiadis, E. (2018). Effect of acorn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chemistry, 253, 119-126. doi:10.1016/j.foodchem.2018.01.144

Pasqualone, A., Makhlouf, F. Z., Barkat, M., Difonzo, G., Summo, C., Squeo, G., & Caponio, F. (2019). Effect of acorn flour on the physico-chemical and sensory properties of biscuits. Heliyon, 5(8), e02242. doi:10.1016/j.heliyon.2019.e02242

Velázquez, N., Sánchez, H., Osella, C., & Santiago, L. G. (2011). Using white sorghum flour for gluten-free breadmaking. International Journal of Food Sciences and Nutrition, 63(4), 491-497. doi:10.3109/09637486.2011.636734

Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT - Food Science and Technology, 65, 637-644. doi:10.1016/j.lwt.2015.08.063

Dayakar Rao, B., Anis, M., Kalpana, K., Sunooj, K. V., Patil, J. V., & Ganesh, T. (2016). Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT - Food Science and Technology, 67, 8-13. doi:10.1016/j.lwt.2015.11.033

Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75, 158-164. doi:10.1016/j.jcs.2017.04.004

Rai, S., Kaur, A., & Singh, B. (2011). Quality characteristics of gluten free cookies prepared from different flour combinations. Journal of Food Science and Technology, 51(4), 785-789. doi:10.1007/s13197-011-0547-1

Chauhan, A., Saxena, D. C., & Singh, S. (2016). Physical, textural, and sensory characteristics of wheat and amaranth flour blend cookies. Cogent Food & Agriculture, 2(1). doi:10.1080/23311932.2015.1125773

Chauhan, A., Saxena, D. C., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63(2), 939-945. doi:10.1016/j.lwt.2015.03.115

Inglett, G. E., Chen, D., & Liu, S. X. (2015). Physical properties of gluten-free sugar cookies made from amaranth–oat composites. LWT - Food Science and Technology, 63(1), 214-220. doi:10.1016/j.lwt.2015.03.056

Yamsaengsung, R., Berghofer, E., & Schoenlechner, R. (2012). Physical properties and sensory acceptability of cookies made from chickpea addition to white wheat or whole wheat flour compared to gluten-free amaranth or buckwheat flour. International Journal of Food Science & Technology, 47(10), 2221-2227. doi:10.1111/j.1365-2621.2012.03092.x

Brito, I. L., de Souza, E. L., Felex, S. S. S., Madruga, M. S., Yamashita, F., & Magnani, M. (2014). Nutritional and sensory characteristics of gluten-free quinoa (Chenopodium quinoa Willd)-based cookies development using an experimental mixture design. Journal of Food Science and Technology, 52(9), 5866-5873. doi:10.1007/s13197-014-1659-1

Watanabe, K., Kawanishi-Asaoka, M., Myojin, C., Awata, S., Ofusa, K., & Kodama, K. (2014). Amino Acid Composition, Oxidative Stability, and Consumer Acceptance of Cookies Made with Quinoa Flour. Food Science and Technology Research, 20(3), 687-691. doi:10.3136/fstr.20.687

Bick, M. A., Fogaça, A. de O., & Storck, C. R. (2014). Biscoitos com diferentes concentrações de farinha de quinoa em substituição parcial à farinha de trigo. Brazilian Journal of Food Technology, 17(2), 121-129. doi:10.1590/bjft.2014.015

Jan, U., Gani, A., Ahmad, M., Shah, U., Baba, W. N., Masoodi, F. A., … Wani, S. M. (2015). Characterization of cookies made from wheat flour blended with buckwheat flour and effect on antioxidant properties. Journal of Food Science and Technology, 52(10), 6334-6344. doi:10.1007/s13197-015-1773-8

Sakač, M., Pestorić, M., Mišan, A., Nedeljković, N., … Jambrec, D. (2015). Antioxidant Capacity, Mineral Content and Sensory Properties of Gluten-Free Rice and Buckwheat Cookies. Food Technology and Biotechnology, 53(1), 38-47. doi:10.17113/ftb.53.01.15.3633

Dapčević Hadnađev, T. R., Torbica, A. M., & Hadnađev, M. S. (2012). Influence of Buckwheat Flour and Carboxymethyl Cellulose on Rheological Behaviour and Baking Performance of Gluten-Free Cookie Dough. Food and Bioprocess Technology, 6(7), 1770-1781. doi:10.1007/s11947-012-0841-6

Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., & Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56(2), 476-481. doi:10.1016/j.jcs.2012.04.012

Cheng, Y. F., & Bhat, R. (2016). Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Bioscience, 14, 54-61. doi:10.1016/j.fbio.2016.03.002

Mancebo, C. M., Rodriguez, P., & Gómez, M. (2016). Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT - Food Science and Technology, 67, 127-132. doi:10.1016/j.lwt.2015.11.045

Pasqualone, A., De Angelis, D., Squeo, G., Difonzo, G., Caponio, F., & Summo, C. (2019). The Effect of the Addition of Apulian black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods, 8(10), 504. doi:10.3390/foods8100504

De la Hera, E., Ruiz-París, E., Oliete, B., & Gómez, M. (2012). Studies of the quality of cakes made with wheat-lentil composite flours. LWT, 49(1), 48-54. doi:10.1016/j.lwt.2012.05.009

Jones, J. M. (2014). CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutrition Journal, 13(1). doi:10.1186/1475-2891-13-34

Grundy, M. M.-L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., & Ellis, P. R. (2016). Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 116(5), 816-833. doi:10.1017/s0007114516002610

Hollmann, J., Themeier, H., Neese, U., & Lindhauer, M. G. (2013). Dietary fibre fractions in cereal foods measured by a new integrated AOAC method. Food Chemistry, 140(3), 586-589. doi:10.1016/j.foodchem.2012.12.005

Sirbu, A., & Arghire, C. (2017). Functional bread: Effect of inulin-type products addition on dough rheology and bread quality. Journal of Cereal Science, 75, 220-227. doi:10.1016/j.jcs.2017.03.029

Kadam, S. U., & Prabhasankar, P. (2010). Marine foods as functional ingredients in bakery and pasta products. Food Research International, 43(8), 1975-1980. doi:10.1016/j.foodres.2010.06.007

Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. doi:10.1016/j.foodchem.2017.05.033

Bingham, S., & Riboli, E. (2004). Diet and cancer — the European Prospective Investigation into Cancer and Nutrition. Nature Reviews Cancer, 4(3), 206-215. doi:10.1038/nrc1298

Shukla, K., & Srivastava, S. (2011). Evaluation of finger millet incorporated noodles for nutritive value and glycemic index. Journal of Food Science and Technology, 51(3), 527-534. doi:10.1007/s13197-011-0530-x

Mudgil, D., Barak, S., & Khatkar, B. S. (2016). Optimization of bread firmness, specific loaf volume and sensory acceptability of bread with soluble fiber and different water levels. Journal of Cereal Science, 70, 186-191. doi:10.1016/j.jcs.2016.06.009

Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010

Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., & Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066-1083. doi:10.1016/j.foodres.2016.08.016

Ateş, G., & Elmacı, Y. (2018). Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT, 90, 519-525. doi:10.1016/j.lwt.2018.01.003

Martínez-Cervera, S., Salvador, A., Muguerza, B., Moulay, L., & Fiszman, S. M. (2011). Cocoa fibre and its application as a fat replacer in chocolate muffins. LWT - Food Science and Technology, 44(3), 729-736. doi:10.1016/j.lwt.2010.06.035

Segundo, C., Román, L., Gómez, M., & Martínez, M. M. (2017). Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes. Food Chemistry, 219, 240-248. doi:10.1016/j.foodchem.2016.09.143

Noort, M. W. J., Mattila, O., Katina, K., & van der Kamp, J. W. (2017). HealthBread: Wholegrain and high fibre breads with optimised textural quality. Journal of Cereal Science, 78, 57-65. doi:10.1016/j.jcs.2017.03.009

Talens, C., Álvarez-Sabatel, S., Rios, Y., & Rodríguez, R. (2017). Effect of a new microwave-dried orange fibre ingredient vs. a commercial citrus fibre on texture and sensory properties of gluten-free muffins. Innovative Food Science & Emerging Technologies, 44, 83-88. doi:10.1016/j.ifset.2017.07.011

Verdú, S., Barat, J. M., & Grau, R. (2017). Improving bread-making processing phases of fibre-rich formulas using chia (Salvia hispanica) seed flour. LWT, 84, 419-425. doi:10.1016/j.lwt.2017.06.007

Silva, F. de O., Miranda, T. G., Justo, T., Frasão, B. da S., Conte-Junior, C. A., Monteiro, M., & Perrone, D. (2018). Soybean meal and fermented soybean meal as functional ingredients for the production of low-carb, high-protein, high-fiber and high isoflavones biscuits. LWT, 90, 224-231. doi:10.1016/j.lwt.2017.12.035

Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012

Laguna, L., Primo-Martín, C., Varela, P., Salvador, A., & Sanz, T. (2014). HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT - Food Science and Technology, 56(2), 494-501. doi:10.1016/j.lwt.2013.12.025

Graça, C., Fradinho, P., Sousa, I., & Raymundo, A. (2018). Impact of Chlorella vulgaris on the rheology of wheat flour dough and bread texture. LWT, 89, 466-474. doi:10.1016/j.lwt.2017.11.024

Arufe, S., Della Valle, G., Chiron, H., Chenlo, F., Sineiro, J., & Moreira, R. (2017). Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 244(1), 1-10. doi:10.1007/s00217-017-2929-8

Różyło, R., Hameed Hassoon, W., Gawlik-Dziki, U., Siastała, M., & Dziki, D. (2016). Study on the physical and antioxidant properties of gluten-free bread with brown algae. CyTA - Journal of Food, 15(2), 196-203. doi:10.1080/19476337.2016.1236839

Kerch, G., Zicans, J., & Meri, R. M. (2010). The effect of chitosan oligosaccharides on bread staling. Journal of Cereal Science, 52(3), 491-495. doi:10.1016/j.jcs.2010.08.007

Mogol, B. A., & Gökmen, V. (2016). Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems. Food & Function, 7(8), 3431-3436. doi:10.1039/c6fo00755d

Vici, G., Belli, L., Biondi, M., & Polzonetti, V. (2016). Gluten free diet and nutrient deficiencies: A review. Clinical Nutrition, 35(6), 1236-1241. doi:10.1016/j.clnu.2016.05.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem