- -

A Cloud-Based Framework for Machine Learning Workloads and Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Cloud-Based Framework for Machine Learning Workloads and Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lopez Garcia, Alvaro es_ES
dc.contributor.author Marco De Lucas, Jesús es_ES
dc.contributor.author Antonacci, Marica es_ES
dc.contributor.author Zu Castell, Wolfgang es_ES
dc.contributor.author David, Mario es_ES
dc.contributor.author Hardt, Marcus es_ES
dc.contributor.author Lloret Iglesias, Lara es_ES
dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Plociennik, Marcin es_ES
dc.contributor.author Tran, Viet es_ES
dc.contributor.author Alic, Andrei Stefan es_ES
dc.contributor.author Caballer Fernández, Miguel es_ES
dc.contributor.author Campos Plasencia, Isabel es_ES
dc.contributor.author Costantini, Alessandro es_ES
dc.contributor.author Dlugolinsky, Stefan es_ES
dc.date.accessioned 2020-12-08T04:31:37Z
dc.date.available 2020-12-08T04:31:37Z
dc.date.issued 2020-01-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156557
dc.description.abstract [EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models. es_ES
dc.description.sponsorship This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435 es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cloud computing es_ES
dc.subject Computers and information processing es_ES
dc.subject Deep learning es_ES
dc.subject Distributed computing es_ES
dc.subject Machine learning es_ES
dc.subject Serverless architectures es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A Cloud-Based Framework for Machine Learning Workloads and Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2020.2964386 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777435/EU/Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2020.2964386 es_ES
dc.description.upvformatpinicio 18681 es_ES
dc.description.upvformatpfin 18692 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\401993 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem