Mostrar el registro sencillo del ítem
dc.contributor.author | Lopez Garcia, Alvaro | es_ES |
dc.contributor.author | Marco De Lucas, Jesús | es_ES |
dc.contributor.author | Antonacci, Marica | es_ES |
dc.contributor.author | Zu Castell, Wolfgang | es_ES |
dc.contributor.author | David, Mario | es_ES |
dc.contributor.author | Hardt, Marcus | es_ES |
dc.contributor.author | Lloret Iglesias, Lara | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.contributor.author | Plociennik, Marcin | es_ES |
dc.contributor.author | Tran, Viet | es_ES |
dc.contributor.author | Alic, Andrei Stefan | es_ES |
dc.contributor.author | Caballer Fernández, Miguel | es_ES |
dc.contributor.author | Campos Plasencia, Isabel | es_ES |
dc.contributor.author | Costantini, Alessandro | es_ES |
dc.contributor.author | Dlugolinsky, Stefan | es_ES |
dc.date.accessioned | 2020-12-08T04:31:37Z | |
dc.date.available | 2020-12-08T04:31:37Z | |
dc.date.issued | 2020-01-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156557 | |
dc.description.abstract | [EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models. | es_ES |
dc.description.sponsorship | This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Computers and information processing | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Distributed computing | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Serverless architectures | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A Cloud-Based Framework for Machine Learning Workloads and Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2020.2964386 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777435/EU/Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2020.2964386 | es_ES |
dc.description.upvformatpinicio | 18681 | es_ES |
dc.description.upvformatpfin | 18692 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\401993 | es_ES |