Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156557
Título:
|
A Cloud-Based Framework for Machine Learning Workloads and Applications
|
Autor:
|
Lopez Garcia, Alvaro
Marco De Lucas, Jesús
Antonacci, Marica
Zu Castell, Wolfgang
David, Mario
Hardt, Marcus
Lloret Iglesias, Lara
Moltó, Germán
Plociennik, Marcin
Tran, Viet
Alic, Andrei Stefan
Caballer Fernández, Miguel
Campos Plasencia, Isabel
Costantini, Alessandro
Dlugolinsky, Stefan
|
Entidad UPV:
|
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
|
Fecha difusión:
|
|
Resumen:
|
[EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models ...[+]
[EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models.
[-]
|
Palabras clave:
|
Cloud computing
,
Computers and information processing
,
Deep learning
,
Distributed computing
,
Machine learning
,
Serverless architectures
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
IEEE Access. (eissn:
2169-3536
)
|
DOI:
|
10.1109/ACCESS.2020.2964386
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/ACCESS.2020.2964386
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/H2020/777435/EU/Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud/
|
Agradecimientos:
|
This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 ...[+]
This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435
[-]
|
Tipo:
|
Artículo
|