- -

Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone

Mostrar el registro completo del ítem

Mazarío-Santa-Pau, J.; Parreño-Romero, M.; Concepción Heydorn, P.; Chávez-Sifontes, M.; Spanevello, RA.; Comba, MB.; Suárez, AG.... (2019). Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone. Green Chemistry. 21(17):4769-4785. https://doi.org/10.1039/c9gc01857c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156660

Ficheros en el ítem

Metadatos del ítem

Título: Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone
Autor: Mazarío-Santa-Pau, Jaime Parreño-Romero, Miriam Concepción Heydorn, Patricia Chávez-Sifontes, Marvin Spanevello, Rolando A. Comba, María B. Suárez, Alejandra G. Domine, Marcelo Eduardo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Levoglucosenone, directly produced from cellulose-containing residual biomass via pyrolysis treatments, is believed to be a promising bio-renewable platform for both fine and commodity chemicals. In this work, the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c9gc01857c
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9gc01857c
Código del Proyecto:
info:eu-repo/grantAgreement/CONICET//RD 4183%2F15/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/
Agradecimientos:
Financial support by the Spanish Government (CTQ-201567592, SEV-2016-0683 and PGC2018-097277-B-100) is gratefully acknowledged. R.S. thanks the CONICET financial support (CONICET-CSIC, PVCE Program, RD 4183/15). J.M. thanks ...[+]
Tipo: Artículo

References

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015

Krishna, S. H., Huang, K., Barnett, K. J., He, J., Maravelias, C. T., Dumesic, J. A., … Weckhuysen, B. M. (2018). Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. AIChE Journal, 64(6), 1910-1922. doi:10.1002/aic.16172 [+]
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015

Krishna, S. H., Huang, K., Barnett, K. J., He, J., Maravelias, C. T., Dumesic, J. A., … Weckhuysen, B. M. (2018). Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. AIChE Journal, 64(6), 1910-1922. doi:10.1002/aic.16172

Dobele, G., Rossinskaja, G., Telysheva, G., Meier, D., & Faix, O. (1999). Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis, 49(1-2), 307-317. doi:10.1016/s0165-2370(98)00126-0

Sarotti, A. M., Spanevello, R. A., & Suárez, A. G. (2007). An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chemistry, 9(10), 1137. doi:10.1039/b703690f

Kudo, S., Zhou, Z., Yamasaki, K., Norinaga, K., & Hayashi, J. (2013). Sulfonate Ionic Liquid as a Stable and Active Catalyst for Levoglucosenone Production from Saccharides via Catalytic Pyrolysis. Catalysts, 3(4), 757-773. doi:10.3390/catal3040757

Kudo, S., Goto, N., Sperry, J., Norinaga, K., & Hayashi, J. (2016). Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase. ACS Sustainable Chemistry & Engineering, 5(1), 1132-1140. doi:10.1021/acssuschemeng.6b02463

Kudo, S., Zhou, Z., Norinaga, K., & Hayashi, J. (2011). Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chemistry, 13(11), 3306. doi:10.1039/c1gc15975e

Lu, Q., Ye, X., Zhang, Z., Dong, C., & Zhang, Y. (2014). Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42−/TiO2–Fe3O4. Bioresource Technology, 171, 10-15. doi:10.1016/j.biortech.2014.08.075

Wang, Z., Lu, Q., Zhu, X.-F., & Zhang, Y. (2010). Catalytic Fast Pyrolysis of Cellulose to Prepare Levoglucosenone Using Sulfated Zirconia. ChemSusChem, 4(1), 79-84. doi:10.1002/cssc.201000210

Corne, V., Botta, M. C., Giordano, E. D. V., Giri, G. F., Llompart, D. F., Biava, H. D., … Spanevello, R. A. (2013). Cellulose recycling as a source of raw chirality. Pure and Applied Chemistry, 85(8), 1683-1692. doi:10.1351/pac-con-12-11-10

Tsai, Y., Borini Etichetti, C. M., Di Benedetto, C., Girardini, J. E., Martins, F. T., Spanevello, R. A., … Sarotti, A. M. (2018). Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations. The Journal of Organic Chemistry, 83(7), 3516-3528. doi:10.1021/acs.joc.7b03141

Comba, M. B., Tsai, Y., Sarotti, A. M., Mangione, M. I., Suárez, A. G., & Spanevello, R. A. (2017). Levoglucosenone and Its New Applications: Valorization of Cellulose Residues. European Journal of Organic Chemistry, 2018(5), 590-604. doi:10.1002/ejoc.201701227

Zanardi, M. M., & Suárez, A. G. (2009). Synthesis of a simple chiral auxiliary derived from levoglucosenone and its application in a Diels–Alder reaction. Tetrahedron Letters, 50(9), 999-1002. doi:10.1016/j.tetlet.2008.12.048

Shafizadeh, F., & Chin, P. P. S. (1977). Preparation of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) and some derivatives thereof. Carbohydrate Research, 58(1), 79-87. doi:10.1016/s0008-6215(00)83406-0

Krishna, S. H., McClelland, D. J., Rashke, Q. A., Dumesic, J. A., & Huber, G. W. (2017). Hydrogenation of levoglucosenone to renewable chemicals. Green Chemistry, 19(5), 1278-1285. doi:10.1039/c6gc03028a

Krishna, S. H., Assary, R. S., Rashke, Q. A., Schmidt, Z. R., Curtiss, L. A., Dumesic, J. A., & Huber, G. W. (2018). Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catalysis, 8(5), 3743-3753. doi:10.1021/acscatal.7b03764

Sherwood, J., De bruyn Mario, Constantinou, A., Moity, L., McElroy, C. R., Farmer, T. J., … Clark, J. H. (2014). Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun., 50(68), 9650-9652. doi:10.1039/c4cc04133j

Zhang, J., White, G. B., Ryan, M. D., Hunt, A. J., & Katz, M. J. (2016). Dihydrolevoglucosenone (Cyrene) As a Green Alternative to N,N-Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry & Engineering, 4(12), 7186-7192. doi:10.1021/acssuschemeng.6b02115

Zhang, X., Wang, T., Ma, L., Zhang, Q., Huang, X., & Yu, Y. (2013). Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts. Applied Energy, 112, 533-538. doi:10.1016/j.apenergy.2013.04.077

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Jacob, K.-H., Knözinger, E., & Benier, S. (1993). Adsorption sites on polymorphic zirconia. J. Mater. Chem., 3(6), 651-657. doi:10.1039/jm9930300651

Englisch, M., Jentys, A., & Lercher, J. A. (1997). Structure Sensitivity of the Hydrogenation of Crotonaldehyde over Pt/SiO2and Pt/TiO2. Journal of Catalysis, 166(1), 25-35. doi:10.1006/jcat.1997.1494

Delbecq, F., & Sautet, P. (1995). Competitive CC and CO Adsorption of α-β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions: A Theoretical Approach. Journal of Catalysis, 152(2), 217-236. doi:10.1006/jcat.1995.1077

Li, H., Calle-Vallejo, F., Kolb, M. J., Kwon, Y., Li, Y., & Koper, M. T. M. (2013). Why (1 0 0) Terraces Break and Make Bonds: Oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. Journal of the American Chemical Society, 135(38), 14329-14338. doi:10.1021/ja406655q

Yamagishi, S., Fujimoto, T., Inada, Y., & Orita, H. (2005). Studies of CO Adsorption on Pt(100), Pt(410), and Pt(110) Surfaces Using Density Functional Theory. The Journal of Physical Chemistry B, 109(18), 8899-8908. doi:10.1021/jp050722i

Bertarione, S., Scarano, D., Zecchina, A., Johánek, V., Hoffmann, J., Schauermann, S., … Freund, H.-J. (2004). Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalysts:  Infrared Study of CO Adsorption. The Journal of Physical Chemistry B, 108(11), 3603-3613. doi:10.1021/jp036718t

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem