- -

Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mazarío-Santa-Pau, Jaime es_ES
dc.contributor.author Parreño-Romero, Miriam es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Chávez-Sifontes, Marvin es_ES
dc.contributor.author Spanevello, Rolando A. es_ES
dc.contributor.author Comba, María B. es_ES
dc.contributor.author Suárez, Alejandra G. es_ES
dc.contributor.author Domine, Marcelo Eduardo es_ES
dc.date.accessioned 2020-12-10T04:31:52Z
dc.date.available 2020-12-10T04:31:52Z
dc.date.issued 2019-09-07 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156660
dc.description.abstract [EN] Levoglucosenone, directly produced from cellulose-containing residual biomass via pyrolysis treatments, is believed to be a promising bio-renewable platform for both fine and commodity chemicals. In this work, the possibilities given by tuneable catalysts based on Pd and Pt supported on metallic oxides to produce the desired product in the one-pot hydrogenation of levoglucosenone are evaluated. Particularly, the excellent catalytic performance of Pd/ZrO2 and Pt/ZrO2 type materials for the synthesis of dihydrolevoglucosenone (or Cyrene) and levoglucosanol, respectively, during the mild hydrogenation of levoglucosenone is demonstrated. In the Cyrene synthesis, the Pd/t-ZrO2 material showed the best catalytic activity compared to other Pd-supported on metallic oxides. This catalyst achieved nearly 95% yields of Cyrene by working under mild reaction conditions, with very low catalyst loadings (¿3 wt%) and using water as the solvent. On the other hand, the one-pot hydrogenation of levoglucosenone to levoglucosanol is reported for the first time with a Pt-based heterogeneous catalyst (Pt/ZrO2-mix, yield ¿90%), by working at low temperatures and mild H2 pressures with water as the solvent. Comparison of the results attained with other Pt-supported metallic oxides let us to conclude that the metal crystal facets (specifically the 100 facet) play an important role in the hydrogenation process to give levoglucosanol selectively. In addition, the stability and re-usability of both catalysts under operational conditions are also evaluated. Finally, catalytic tests including the use of crude bio-liquids obtained from cellulose-rich biomass pyrolysis and containing ¿66 wt% of levoglucosenone are also assayed, thus demonstrating the possibility of scaling-up the process over these metals supported on zirconia catalysts. es_ES
dc.description.sponsorship Financial support by the Spanish Government (CTQ-201567592, SEV-2016-0683 and PGC2018-097277-B-100) is gratefully acknowledged. R.S. thanks the CONICET financial support (CONICET-CSIC, PVCE Program, RD 4183/15). J.M. thanks MICINN (CTQ2015-67592) for the PhD fellowship. Authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9gc01857c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//RD 4183%2F15/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Mazarío-Santa-Pau, J.; Parreño-Romero, M.; Concepción Heydorn, P.; Chávez-Sifontes, M.; Spanevello, RA.; Comba, MB.; Suárez, AG.... (2019). Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone. Green Chemistry. 21(17):4769-4785. https://doi.org/10.1039/c9gc01857c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9gc01857c es_ES
dc.description.upvformatpinicio 4769 es_ES
dc.description.upvformatpfin 4785 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\409696 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. doi:10.1016/j.enconman.2010.01.015 es_ES
dc.description.references Krishna, S. H., Huang, K., Barnett, K. J., He, J., Maravelias, C. T., Dumesic, J. A., … Weckhuysen, B. M. (2018). Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles. AIChE Journal, 64(6), 1910-1922. doi:10.1002/aic.16172 es_ES
dc.description.references Dobele, G., Rossinskaja, G., Telysheva, G., Meier, D., & Faix, O. (1999). Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis, 49(1-2), 307-317. doi:10.1016/s0165-2370(98)00126-0 es_ES
dc.description.references Sarotti, A. M., Spanevello, R. A., & Suárez, A. G. (2007). An efficient microwave-assisted green transformation of cellulose into levoglucosenone. Advantages of the use of an experimental design approach. Green Chemistry, 9(10), 1137. doi:10.1039/b703690f es_ES
dc.description.references Kudo, S., Zhou, Z., Yamasaki, K., Norinaga, K., & Hayashi, J. (2013). Sulfonate Ionic Liquid as a Stable and Active Catalyst for Levoglucosenone Production from Saccharides via Catalytic Pyrolysis. Catalysts, 3(4), 757-773. doi:10.3390/catal3040757 es_ES
dc.description.references Kudo, S., Goto, N., Sperry, J., Norinaga, K., & Hayashi, J. (2016). Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase. ACS Sustainable Chemistry & Engineering, 5(1), 1132-1140. doi:10.1021/acssuschemeng.6b02463 es_ES
dc.description.references Kudo, S., Zhou, Z., Norinaga, K., & Hayashi, J. (2011). Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chemistry, 13(11), 3306. doi:10.1039/c1gc15975e es_ES
dc.description.references Lu, Q., Ye, X., Zhang, Z., Dong, C., & Zhang, Y. (2014). Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42−/TiO2–Fe3O4. Bioresource Technology, 171, 10-15. doi:10.1016/j.biortech.2014.08.075 es_ES
dc.description.references Wang, Z., Lu, Q., Zhu, X.-F., & Zhang, Y. (2010). Catalytic Fast Pyrolysis of Cellulose to Prepare Levoglucosenone Using Sulfated Zirconia. ChemSusChem, 4(1), 79-84. doi:10.1002/cssc.201000210 es_ES
dc.description.references Corne, V., Botta, M. C., Giordano, E. D. V., Giri, G. F., Llompart, D. F., Biava, H. D., … Spanevello, R. A. (2013). Cellulose recycling as a source of raw chirality. Pure and Applied Chemistry, 85(8), 1683-1692. doi:10.1351/pac-con-12-11-10 es_ES
dc.description.references Tsai, Y., Borini Etichetti, C. M., Di Benedetto, C., Girardini, J. E., Martins, F. T., Spanevello, R. A., … Sarotti, A. M. (2018). Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro-aza-Michael//aza-Michael Isomerizations. The Journal of Organic Chemistry, 83(7), 3516-3528. doi:10.1021/acs.joc.7b03141 es_ES
dc.description.references Comba, M. B., Tsai, Y., Sarotti, A. M., Mangione, M. I., Suárez, A. G., & Spanevello, R. A. (2017). Levoglucosenone and Its New Applications: Valorization of Cellulose Residues. European Journal of Organic Chemistry, 2018(5), 590-604. doi:10.1002/ejoc.201701227 es_ES
dc.description.references Zanardi, M. M., & Suárez, A. G. (2009). Synthesis of a simple chiral auxiliary derived from levoglucosenone and its application in a Diels–Alder reaction. Tetrahedron Letters, 50(9), 999-1002. doi:10.1016/j.tetlet.2008.12.048 es_ES
dc.description.references Shafizadeh, F., & Chin, P. P. S. (1977). Preparation of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) and some derivatives thereof. Carbohydrate Research, 58(1), 79-87. doi:10.1016/s0008-6215(00)83406-0 es_ES
dc.description.references Krishna, S. H., McClelland, D. J., Rashke, Q. A., Dumesic, J. A., & Huber, G. W. (2017). Hydrogenation of levoglucosenone to renewable chemicals. Green Chemistry, 19(5), 1278-1285. doi:10.1039/c6gc03028a es_ES
dc.description.references Krishna, S. H., Assary, R. S., Rashke, Q. A., Schmidt, Z. R., Curtiss, L. A., Dumesic, J. A., & Huber, G. W. (2018). Mechanistic Insights into the Hydrogenolysis of Levoglucosanol over Bifunctional Platinum Silica–Alumina Catalysts. ACS Catalysis, 8(5), 3743-3753. doi:10.1021/acscatal.7b03764 es_ES
dc.description.references Sherwood, J., De bruyn Mario, Constantinou, A., Moity, L., McElroy, C. R., Farmer, T. J., … Clark, J. H. (2014). Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun., 50(68), 9650-9652. doi:10.1039/c4cc04133j es_ES
dc.description.references Zhang, J., White, G. B., Ryan, M. D., Hunt, A. J., & Katz, M. J. (2016). Dihydrolevoglucosenone (Cyrene) As a Green Alternative to N,N-Dimethylformamide (DMF) in MOF Synthesis. ACS Sustainable Chemistry & Engineering, 4(12), 7186-7192. doi:10.1021/acssuschemeng.6b02115 es_ES
dc.description.references Zhang, X., Wang, T., Ma, L., Zhang, Q., Huang, X., & Yu, Y. (2013). Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts. Applied Energy, 112, 533-538. doi:10.1016/j.apenergy.2013.04.077 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Jacob, K.-H., Knözinger, E., & Benier, S. (1993). Adsorption sites on polymorphic zirconia. J. Mater. Chem., 3(6), 651-657. doi:10.1039/jm9930300651 es_ES
dc.description.references Englisch, M., Jentys, A., & Lercher, J. A. (1997). Structure Sensitivity of the Hydrogenation of Crotonaldehyde over Pt/SiO2and Pt/TiO2. Journal of Catalysis, 166(1), 25-35. doi:10.1006/jcat.1997.1494 es_ES
dc.description.references Delbecq, F., & Sautet, P. (1995). Competitive CC and CO Adsorption of α-β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions: A Theoretical Approach. Journal of Catalysis, 152(2), 217-236. doi:10.1006/jcat.1995.1077 es_ES
dc.description.references Li, H., Calle-Vallejo, F., Kolb, M. J., Kwon, Y., Li, Y., & Koper, M. T. M. (2013). Why (1 0 0) Terraces Break and Make Bonds: Oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. Journal of the American Chemical Society, 135(38), 14329-14338. doi:10.1021/ja406655q es_ES
dc.description.references Yamagishi, S., Fujimoto, T., Inada, Y., & Orita, H. (2005). Studies of CO Adsorption on Pt(100), Pt(410), and Pt(110) Surfaces Using Density Functional Theory. The Journal of Physical Chemistry B, 109(18), 8899-8908. doi:10.1021/jp050722i es_ES
dc.description.references Bertarione, S., Scarano, D., Zecchina, A., Johánek, V., Hoffmann, J., Schauermann, S., … Freund, H.-J. (2004). Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalysts:  Infrared Study of CO Adsorption. The Journal of Physical Chemistry B, 108(11), 3603-3613. doi:10.1021/jp036718t es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem