- -

Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

Show full item record

Anzt, H.; Dongarra, J.; Flegar, G.; Higham, NJ.; Quintana Ortí, ES. (2019). Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and Computation Practice and Experience. 31(6):1-12. https://doi.org/10.1002/cpe.4460

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156663

Files in this item

Item Metadata

Title: Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers
Author: Anzt, Hartwig Dongarra, Jack Flegar, Goran Higham, Nicholas J. Quintana Ortí, Enrique Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] We propose an adaptive scheme to reduce communication overhead caused by data movement by selectively storing the diagonal blocks of a block-Jacobi preconditioner in different precision formats (half, single, or ...[+]
Subjects: Adaptive precision , Block-Jacobi preconditioning , Communication reduction , Energy efficiency , Krylov subspace methods , Sparse linear systems
Copyrigths: Reserva de todos los derechos
Source:
Concurrency and Computation Practice and Experience. (issn: 1532-0626 )
DOI: 10.1002/cpe.4460
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/cpe.4460
Project ID:
info:eu-repo/grantAgreement/EC/H2020/732631/EU/Open transPREcision COMPuting/
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/UKRI//EP%2FP020720%2F1/GB/Inference, COmputation and Numerics for Insights into Cities (ICONIC)/
info:eu-repo/grantAgreement/Helmholtz Association of German Research Centers//VH-NG-1241/
info:eu-repo/grantAgreement/DOE//17-SC-20-SC/
Description: This is the peer reviewed version of the following article: Anzt, H, Dongarra, J, Flegar, G, Higham, NJ, Quintana-Ortí, ES. Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency Computat Pract Exper. 2019; 31:e4460, which has been published in final form at https://doi.org/10.1002/cpe.4460. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
Impuls und Vernetzungsfond of the Helmholtz Association, Grant/Award Number: VH-NG-1241; MINECO and FEDER, Grant/Award Number: TIN2014-53495-R; H2020 EU FETHPC Project, Grant/Award Number: 732631; MathWorks; Engineering ...[+]
Type: Artículo

References

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003

Anzt H Dongarra J Flegar G Quintana-Ortí ES Batched Gauss-Jordan elimination for block-Jacobi preconditioner generation on GPUs 2017 Austin, TX http://doi.acm.org/10.1145/3026937.3026940

Anzt H Dongarra J Flegar G Quintana-Ortí ES Variable-size batched LU for small matrices and its integration into block-Jacobi preconditioning 2017 Bristol, UK https://doi.org/10.1109/ICPP.2017.18 [+]
Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003

Anzt H Dongarra J Flegar G Quintana-Ortí ES Batched Gauss-Jordan elimination for block-Jacobi preconditioner generation on GPUs 2017 Austin, TX http://doi.acm.org/10.1145/3026937.3026940

Anzt H Dongarra J Flegar G Quintana-Ortí ES Variable-size batched LU for small matrices and its integration into block-Jacobi preconditioning 2017 Bristol, UK https://doi.org/10.1109/ICPP.2017.18

Dongarra J Hittinger J Bell J Applied Mathematics Research for Exascale Computing [Technical Report] Washington, DC 2014 https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf

Duranton M De Bosschere K Cohen A Maebe J Munk H HiPEAC Vision 2015 https://www.hipeac.org/publications/vision/ 2015

Lucas R Top Ten Exascale Research Challenges http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf 2014

Lavignon JF ETP4HPC Strategic Research Agenda Achieving HPC Leadership in Europe 2013 http://www.etp4hpc.eu/

Carson, E., & Higham, N. J. (2017). A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems. SIAM Journal on Scientific Computing, 39(6), A2834-A2856. doi:10.1137/17m1122918

Carson E Higham NJ Accelerating the solution of linear systems by iterative refinement in three precisions July 2017 http://eprints.ma.man.ac.uk/2562 SIAM Journal on Scientific Computing

Shalf J The evolution of programming models in response to energy efficiency constraints October 2013 Norman, OK http://www.oscer.ou.edu/Symposium2013/oksupercompsymp2013_talk_shalf_20131002.pdf

Golub, G. H., & Ye, Q. (1999). Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM Journal on Scientific Computing, 21(4), 1305-1320. doi:10.1137/s1064827597323415

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538

Notay, Y. (2000). Flexible Conjugate Gradients. SIAM Journal on Scientific Computing, 22(4), 1444-1460. doi:10.1137/s1064827599362314

Knyazev, A. V., & Lashuk, I. (2008). Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4), 1267-1280. doi:10.1137/060675290

CROZ, J. J. D., & HIGHAM, N. J. (1992). Stability of Methods for Matrix Inversion. IMA Journal of Numerical Analysis, 12(1), 1-19. doi:10.1093/imanum/12.1.1

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027

Chow E Scott J On the use of iterative methods and blocking for solving sparse triangular systems in incomplete factorization preconditioning Swindon, UK Rutherford Appleton Laboratory 2016

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record