- -

Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anzt, Hartwig es_ES
dc.contributor.author Dongarra, Jack es_ES
dc.contributor.author Flegar, Goran es_ES
dc.contributor.author Higham, Nicholas J. es_ES
dc.contributor.author Quintana Ortí, Enrique Salvador es_ES
dc.date.accessioned 2020-12-10T04:32:04Z
dc.date.available 2020-12-10T04:32:04Z
dc.date.issued 2019-03-25 es_ES
dc.identifier.issn 1532-0626 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156663
dc.description This is the peer reviewed version of the following article: Anzt, H, Dongarra, J, Flegar, G, Higham, NJ, Quintana-Ortí, ES. Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency Computat Pract Exper. 2019; 31:e4460, which has been published in final form at https://doi.org/10.1002/cpe.4460. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] We propose an adaptive scheme to reduce communication overhead caused by data movement by selectively storing the diagonal blocks of a block-Jacobi preconditioner in different precision formats (half, single, or double). This specialized preconditioner can then be combined with any Krylov subspace method for the solution of sparse linear systems to perform all arithmetic in double precision. We assess the effects of the adaptive precision preconditioner on the iteration count and data transfer cost of a preconditioned conjugate gradient solver. A preconditioned conjugate gradient method is, in general, a memory bandwidth-bound algorithm, and therefore its execution time and energy consumption are largely dominated by the costs of accessing the problem's data in memory. Given this observation, we propose a model that quantifies the time and energy savings of our approach based on the assumption that these two costs depend linearly on the bit length of a floating point number. Furthermore, we use a number of test problems from the SuiteSparse matrix collection to estimate the potential benefits of the adaptive block-Jacobi preconditioning scheme. es_ES
dc.description.sponsorship Impuls und Vernetzungsfond of the Helmholtz Association, Grant/Award Number: VH-NG-1241; MINECO and FEDER, Grant/Award Number: TIN2014-53495-R; H2020 EU FETHPC Project, Grant/Award Number: 732631; MathWorks; Engineering and Physical Sciences Research Council, Grant/Award Number: EP/P020720/1; Exascale Computing Project, Grant/Award Number: 17-SC-20-SC es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Concurrency and Computation Practice and Experience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adaptive precision es_ES
dc.subject Block-Jacobi preconditioning es_ES
dc.subject Communication reduction es_ES
dc.subject Energy efficiency es_ES
dc.subject Krylov subspace methods es_ES
dc.subject Sparse linear systems es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cpe.4460 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/732631/EU/Open transPREcision COMPuting/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FP020720%2F1/GB/Inference, COmputation and Numerics for Insights into Cities (ICONIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Helmholtz Association of German Research Centers//VH-NG-1241/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//17-SC-20-SC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Anzt, H.; Dongarra, J.; Flegar, G.; Higham, NJ.; Quintana Ortí, ES. (2019). Adaptive precision in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and Computation Practice and Experience. 31(6):1-12. https://doi.org/10.1002/cpe.4460 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cpe.4460 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\381008 es_ES
dc.contributor.funder Mathworks es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.description.references Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003 es_ES
dc.description.references Anzt H Dongarra J Flegar G Quintana-Ortí ES Batched Gauss-Jordan elimination for block-Jacobi preconditioner generation on GPUs 2017 Austin, TX http://doi.acm.org/10.1145/3026937.3026940 es_ES
dc.description.references Anzt H Dongarra J Flegar G Quintana-Ortí ES Variable-size batched LU for small matrices and its integration into block-Jacobi preconditioning 2017 Bristol, UK https://doi.org/10.1109/ICPP.2017.18 es_ES
dc.description.references Dongarra J Hittinger J Bell J Applied Mathematics Research for Exascale Computing [Technical Report] Washington, DC 2014 https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf es_ES
dc.description.references Duranton M De Bosschere K Cohen A Maebe J Munk H HiPEAC Vision 2015 https://www.hipeac.org/publications/vision/ 2015 es_ES
dc.description.references Lucas R Top Ten Exascale Research Challenges http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf 2014 es_ES
dc.description.references Lavignon JF ETP4HPC Strategic Research Agenda Achieving HPC Leadership in Europe 2013 http://www.etp4hpc.eu/ es_ES
dc.description.references Carson, E., & Higham, N. J. (2017). A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems. SIAM Journal on Scientific Computing, 39(6), A2834-A2856. doi:10.1137/17m1122918 es_ES
dc.description.references Carson E Higham NJ Accelerating the solution of linear systems by iterative refinement in three precisions July 2017 http://eprints.ma.man.ac.uk/2562 SIAM Journal on Scientific Computing es_ES
dc.description.references Shalf J The evolution of programming models in response to energy efficiency constraints October 2013 Norman, OK http://www.oscer.ou.edu/Symposium2013/oksupercompsymp2013_talk_shalf_20131002.pdf es_ES
dc.description.references Golub, G. H., & Ye, Q. (1999). Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM Journal on Scientific Computing, 21(4), 1305-1320. doi:10.1137/s1064827597323415 es_ES
dc.description.references Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538 es_ES
dc.description.references Notay, Y. (2000). Flexible Conjugate Gradients. SIAM Journal on Scientific Computing, 22(4), 1444-1460. doi:10.1137/s1064827599362314 es_ES
dc.description.references Knyazev, A. V., & Lashuk, I. (2008). Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning. SIAM Journal on Matrix Analysis and Applications, 29(4), 1267-1280. doi:10.1137/060675290 es_ES
dc.description.references CROZ, J. J. D., & HIGHAM, N. J. (1992). Stability of Methods for Matrix Inversion. IMA Journal of Numerical Analysis, 12(1), 1-19. doi:10.1093/imanum/12.1.1 es_ES
dc.description.references Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. doi:10.1137/1.9780898718027 es_ES
dc.description.references Chow E Scott J On the use of iterative methods and blocking for solving sparse triangular systems in incomplete factorization preconditioning Swindon, UK Rutherford Appleton Laboratory 2016 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem