Mostrar el registro sencillo del ítem
dc.contributor.author | Sayas Montañana, Enric Miquel | es_ES |
dc.contributor.author | Pérez-Benavente, Beatriz | es_ES |
dc.contributor.author | Manzano, C. | es_ES |
dc.contributor.author | Farràs, Rosa | es_ES |
dc.contributor.author | Alejandro Martinez, Santiago | es_ES |
dc.contributor.author | del Pozo, J.C. | es_ES |
dc.contributor.author | Ferrando Monleón, Alejandro Ramón | es_ES |
dc.contributor.author | Serrano Salom, Ramón | es_ES |
dc.date.accessioned | 2020-12-11T04:32:41Z | |
dc.date.available | 2020-12-11T04:32:41Z | |
dc.date.issued | 2019-01-28 | es_ES |
dc.identifier.issn | 0014-5793 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156834 | |
dc.description.abstract | [EN] Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins. Accordingly, these polyamines inhibit protein ubiquitylation, both in vivo (in yeast, Arabidopsis, and human Hela cells) and in vitro (with recombinant ubiquitin ligase). This interferes with protein degradation by the proteasome, a situation known to deplete cells of amino acids. Norspermidine treatment of yeast cells induces amino acid depletion, and supplementation of media with amino acids counteracts growth inhibition and cellular amino acid depletion but not inhibition of protein polyubiquitylation. | es_ES |
dc.description.sponsorship | This work was supported by grant PROMETEO II 2014/041 from Generalitat Valenciana, Valencia, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | FEBS Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Amino acid depletion | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | HeLa cells | es_ES |
dc.subject | Ubiquitin ligase | es_ES |
dc.subject | Yeast | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/1873-3468.13299 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F041/ES/La homeostasis de cationes monovalentes (H+, K+ y Na+) y el crecimiento y muerte celular/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Sayas Montañana, EM.; Pérez-Benavente, B.; Manzano, C.; Farràs, R.; Alejandro Martinez, S.; Del Pozo, J.; Ferrando Monleón, AR.... (2019). Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition. FEBS Letters. 593(2):209-218. https://doi.org/10.1002/1873-3468.13299 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/1873-3468.13299 | es_ES |
dc.description.upvformatpinicio | 209 | es_ES |
dc.description.upvformatpfin | 218 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 593 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30447065 | es_ES |
dc.relation.pasarela | S\381769 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Yoda, H., Fujimura, K., Takahashi, H., Munemura, I., Uchimiya, H., & Sano, H. (2009). Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Molecular Biology, 70(1-2), 103-112. doi:10.1007/s11103-009-9459-0 | es_ES |
dc.description.references | Pérez-Benavente, B., & Farràs, R. (2016). Cell Synchronization Techniques to Study the Action of CDK Inhibitors. Cyclin-Dependent Kinase (CDK) Inhibitors, 85-93. doi:10.1007/978-1-4939-2926-9_8 | es_ES |
dc.description.references | Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.x | es_ES |
dc.description.references | Guerra, D., Mastrangelo, A. M., Lopez-Torrejon, G., Marzin, S., Schweizer, P., Stanca, A. M., … Mazzucotelli, E. (2011). Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration. Plant Physiology, 158(2), 777-789. doi:10.1104/pp.111.183988 | es_ES |
dc.description.references | Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-Guzmán, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004 | es_ES |
dc.description.references | Nodzon, L. A., Xu, W.-H., Wang, Y., Pi, L.-Y., Chakrabarty, P. K., & Song, W.-Y. (2004). The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. The Plant Journal, 40(6), 996-1006. doi:10.1111/j.1365-313x.2004.02266.x | es_ES |
dc.description.references | Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884-890. doi:10.1038/nature02261 | es_ES |
dc.description.references | Trotter, E. W., Kao, C. M.-F., Berenfeld, L., Botstein, D., Petsko, G. A., & Gray, J. V. (2002). Misfolded Proteins Are Competent to Mediate a Subset of the Responses to Heat Shock in Saccharomyces cerevisiae. Journal of Biological Chemistry, 277(47), 44817-44825. doi:10.1074/jbc.m204686200 | es_ES |
dc.description.references | Sugio, A., Dreos, R., Aparicio, F., & Maule, A. J. (2009). The Cytosolic Protein Response as a Subcomponent of the Wider Heat Shock Response in Arabidopsis. The Plant Cell, 21(2), 642-654. doi:10.1105/tpc.108.062596 | es_ES |
dc.description.references | Ciechanover, A. (1998). The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO Journal, 17(24), 7151-7160. doi:10.1093/emboj/17.24.7151 | es_ES |
dc.description.references | Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688 | es_ES |
dc.description.references | Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8(8), 739-758. doi:10.1016/s1074-5521(01)00056-4 | es_ES |
dc.description.references | Wenzel, D. M., Lissounov, A., Brzovic, P. S., & Klevit, R. E. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature, 474(7349), 105-108. doi:10.1038/nature09966 | es_ES |
dc.description.references | Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8(10), 397-403. doi:10.1016/s0962-8924(98)01346-4 | es_ES |
dc.description.references | Zhang, W., & Sidhu, S. S. (2013). Development of inhibitors in the ubiquitination cascade. FEBS Letters, 588(2), 356-367. doi:10.1016/j.febslet.2013.11.003 | es_ES |
dc.description.references | De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725 | es_ES |
dc.description.references | Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1 | es_ES |
dc.description.references | McClellan, A. J., Scott, M. D., & Frydman, J. (2005). Folding and Quality Control of the VHL Tumor Suppressor Proceed through Distinct Chaperone Pathways. Cell, 121(5), 739-748. doi:10.1016/j.cell.2005.03.024 | es_ES |
dc.description.references | Schwartz, A. L., & Ciechanover, A. (2009). Targeting Proteins for Destruction by the Ubiquitin System: Implications for Human Pathobiology. Annual Review of Pharmacology and Toxicology, 49(1), 73-96. doi:10.1146/annurev.pharmtox.051208.165340 | es_ES |
dc.description.references | Suraweera, A., Münch, C., Hanssum, A., & Bertolotti, A. (2012). Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. Molecular Cell, 48(2), 242-253. doi:10.1016/j.molcel.2012.08.003 | es_ES |
dc.description.references | Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833 | es_ES |
dc.description.references | Albert, V., & Hall, M. N. (2015). mTOR signaling in cellular and organismal energetics. Current Opinion in Cell Biology, 33, 55-66. doi:10.1016/j.ceb.2014.12.001 | es_ES |
dc.description.references | Arruabarrena-Aristorena, A., Zabala-Letona, A., & Carracedo, A. (2018). Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. Science Advances, 4(1), eaar2606. doi:10.1126/sciadv.aar2606 | es_ES |