- -

Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sayas Montañana, Enric Miquel es_ES
dc.contributor.author Pérez-Benavente, Beatriz es_ES
dc.contributor.author Manzano, C. es_ES
dc.contributor.author Farràs, Rosa es_ES
dc.contributor.author Alejandro Martinez, Santiago es_ES
dc.contributor.author del Pozo, J.C. es_ES
dc.contributor.author Ferrando Monleón, Alejandro Ramón es_ES
dc.contributor.author Serrano Salom, Ramón es_ES
dc.date.accessioned 2020-12-11T04:32:41Z
dc.date.available 2020-12-11T04:32:41Z
dc.date.issued 2019-01-28 es_ES
dc.identifier.issn 0014-5793 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156834
dc.description.abstract [EN] Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins. Accordingly, these polyamines inhibit protein ubiquitylation, both in vivo (in yeast, Arabidopsis, and human Hela cells) and in vitro (with recombinant ubiquitin ligase). This interferes with protein degradation by the proteasome, a situation known to deplete cells of amino acids. Norspermidine treatment of yeast cells induces amino acid depletion, and supplementation of media with amino acids counteracts growth inhibition and cellular amino acid depletion but not inhibition of protein polyubiquitylation. es_ES
dc.description.sponsorship This work was supported by grant PROMETEO II 2014/041 from Generalitat Valenciana, Valencia, Spain. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof FEBS Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amino acid depletion es_ES
dc.subject Arabidopsis es_ES
dc.subject HeLa cells es_ES
dc.subject Ubiquitin ligase es_ES
dc.subject Yeast es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/1873-3468.13299 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F041/ES/La homeostasis de cationes monovalentes (H+, K+ y Na+) y el crecimiento y muerte celular/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Sayas Montañana, EM.; Pérez-Benavente, B.; Manzano, C.; Farràs, R.; Alejandro Martinez, S.; Del Pozo, J.; Ferrando Monleón, AR.... (2019). Polyamines interfere with protein ubiquitylation and cause depletion of intracellular amino acids: a possible mechanism for cell growth inhibition. FEBS Letters. 593(2):209-218. https://doi.org/10.1002/1873-3468.13299 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/1873-3468.13299 es_ES
dc.description.upvformatpinicio 209 es_ES
dc.description.upvformatpfin 218 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 593 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30447065 es_ES
dc.relation.pasarela S\381769 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Yoda, H., Fujimura, K., Takahashi, H., Munemura, I., Uchimiya, H., & Sano, H. (2009). Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Molecular Biology, 70(1-2), 103-112. doi:10.1007/s11103-009-9459-0 es_ES
dc.description.references Pérez-Benavente, B., & Farràs, R. (2016). Cell Synchronization Techniques to Study the Action of CDK Inhibitors. Cyclin-Dependent Kinase (CDK) Inhibitors, 85-93. doi:10.1007/978-1-4939-2926-9_8 es_ES
dc.description.references Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.x es_ES
dc.description.references Guerra, D., Mastrangelo, A. M., Lopez-Torrejon, G., Marzin, S., Schweizer, P., Stanca, A. M., … Mazzucotelli, E. (2011). Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration. Plant Physiology, 158(2), 777-789. doi:10.1104/pp.111.183988 es_ES
dc.description.references Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-Guzmán, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004 es_ES
dc.description.references Nodzon, L. A., Xu, W.-H., Wang, Y., Pi, L.-Y., Chakrabarty, P. K., & Song, W.-Y. (2004). The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. The Plant Journal, 40(6), 996-1006. doi:10.1111/j.1365-313x.2004.02266.x es_ES
dc.description.references Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426(6968), 884-890. doi:10.1038/nature02261 es_ES
dc.description.references Trotter, E. W., Kao, C. M.-F., Berenfeld, L., Botstein, D., Petsko, G. A., & Gray, J. V. (2002). Misfolded Proteins Are Competent to Mediate a Subset of the Responses to Heat Shock in Saccharomyces cerevisiae. Journal of Biological Chemistry, 277(47), 44817-44825. doi:10.1074/jbc.m204686200 es_ES
dc.description.references Sugio, A., Dreos, R., Aparicio, F., & Maule, A. J. (2009). The Cytosolic Protein Response as a Subcomponent of the Wider Heat Shock Response in Arabidopsis. The Plant Cell, 21(2), 642-654. doi:10.1105/tpc.108.062596 es_ES
dc.description.references Ciechanover, A. (1998). The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO Journal, 17(24), 7151-7160. doi:10.1093/emboj/17.24.7151 es_ES
dc.description.references Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. doi:10.1038/nrm2688 es_ES
dc.description.references Kisselev, A. F., & Goldberg, A. L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chemistry & Biology, 8(8), 739-758. doi:10.1016/s1074-5521(01)00056-4 es_ES
dc.description.references Wenzel, D. M., Lissounov, A., Brzovic, P. S., & Klevit, R. E. (2011). UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature, 474(7349), 105-108. doi:10.1038/nature09966 es_ES
dc.description.references Lee, D. H., & Goldberg, A. L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends in Cell Biology, 8(10), 397-403. doi:10.1016/s0962-8924(98)01346-4 es_ES
dc.description.references Zhang, W., & Sidhu, S. S. (2013). Development of inhibitors in the ubiquitination cascade. FEBS Letters, 588(2), 356-367. doi:10.1016/j.febslet.2013.11.003 es_ES
dc.description.references De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725 es_ES
dc.description.references Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1 es_ES
dc.description.references McClellan, A. J., Scott, M. D., & Frydman, J. (2005). Folding and Quality Control of the VHL Tumor Suppressor Proceed through Distinct Chaperone Pathways. Cell, 121(5), 739-748. doi:10.1016/j.cell.2005.03.024 es_ES
dc.description.references Schwartz, A. L., & Ciechanover, A. (2009). Targeting Proteins for Destruction by the Ubiquitin System: Implications for Human Pathobiology. Annual Review of Pharmacology and Toxicology, 49(1), 73-96. doi:10.1146/annurev.pharmtox.051208.165340 es_ES
dc.description.references Suraweera, A., Münch, C., Hanssum, A., & Bertolotti, A. (2012). Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition. Molecular Cell, 48(2), 242-253. doi:10.1016/j.molcel.2012.08.003 es_ES
dc.description.references Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833 es_ES
dc.description.references Albert, V., & Hall, M. N. (2015). mTOR signaling in cellular and organismal energetics. Current Opinion in Cell Biology, 33, 55-66. doi:10.1016/j.ceb.2014.12.001 es_ES
dc.description.references Arruabarrena-Aristorena, A., Zabala-Letona, A., & Carracedo, A. (2018). Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. Science Advances, 4(1), eaar2606. doi:10.1126/sciadv.aar2606 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem