- -

Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molins-Molina, Oscar es_ES
dc.contributor.author Pérez Ruiz, Raúl es_ES
dc.contributor.author Lence, Emilio es_ES
dc.contributor.author González-Bello, Concepción es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2020-12-11T04:32:54Z
dc.date.available 2020-12-11T04:32:54Z
dc.date.issued 2019-09-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156835
dc.description.abstract [EN] Triflusal is a platelet antiaggregant employed for the treatment and prevention of thromboembolic diseases. After administration, it is biotransformed into its active metabolite, the 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). We present here an investigation on HTB photobinding to human serum albumin (HSA), the most abundant protein in plasma, using an approach that combines fluorescence, MS/MS, and peptide fingerprint analysis as well as theoretical calculations (docking and molecular dynamics simulation studies). The proteomic analysis of HTB/HSA photolysates shows that HTB addition takes place at the epsilon-amino groups of the Lys137, Lys199, Lys205, Lys351, Lys432, Lys525, Lys541 and Lys545 residues and involves replacement of the trifluoromethyl moiety of HTB with a new amide function. Only Lys199 is located in an internal pocket of the protein, and the remaining modified residues are placed in the external part. Docking and molecular dynamic simulation studies reveal that HTB supramolecular binding to HSA occurs in the "V-cleft" region and that the process is assisted by the presence of Glu/Asp residues in the neighborhood of the external Lys, in agreement with the experimentally observed modifications. In principle, photobinding can occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects. es_ES
dc.description.sponsorship We gratefully acknowledge financial support from the Spanish Government (CTQ2016-78875-P, SAF2016-75638-R, BES-2014-069404, and RETICS network ARADyAL RD16/0006/0030), the Generalitat Valenciana (PROMETEO/2017/075 and CIDEGENT/2018/044), the Xunta de Galicia [Centro Singular de Investigacion de Galicia accreditation 2016-2019 (ED431G/09), ED431B 2018/04 and post-doctoral fellowship to EL], and the European Union (European Regional Development Fund-ERDF). The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB3 and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae computer. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Pharmacology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Triflusal metabolite es_ES
dc.subject Human serum albumin es_ES
dc.subject Fluorescence es_ES
dc.subject Proteomic analysis es_ES
dc.subject Docking and molecular dynamics es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphar.2019.01028 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069404/ES/BES-2014-069404/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Molins-Molina, O.; Pérez Ruiz, R.; Lence, E.; González-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology. 10:1-9. https://doi.org/10.3389/fphar.2019.01028 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphar.2019.01028 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1663-9812 es_ES
dc.identifier.pmid 31616294 es_ES
dc.identifier.pmcid PMC6764118 es_ES
dc.relation.pasarela S\396608 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. doi:10.1063/1.464397 es_ES
dc.description.references Deleo, V. A. (2004). Photocontact dermatitis. Dermatologic Therapy, 17(4), 279-288. doi:10.1111/j.1396-0296.2004.04026.x es_ES
dc.description.references Díaz, N., Suárez, D., Sordo, T. L., & Merz, K. M. (2001). Molecular Dynamics Study of the IIA Binding Site in Human Serum Albumin:  Influence of the Protonation State of Lys195 and Lys199. Journal of Medicinal Chemistry, 44(2), 250-260. doi:10.1021/jm000340v es_ES
dc.description.references Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., … Cieplak, P. (2010). The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics, 12(28), 7821. doi:10.1039/c0cp00111b es_ES
dc.description.references Epstein, J. H., & Wintroub, B. U. (1985). Photosensitivity Due to Drugs. Drugs, 30(1), 42-57. doi:10.2165/00003495-198530010-00005 es_ES
dc.description.references Girotti, A. W. (2001). Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 103-113. doi:10.1016/s1011-1344(01)00207-x es_ES
dc.description.references Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368-W371. doi:10.1093/nar/gki464 es_ES
dc.description.references Honari, G. (2014). Photoallergy. Reviews on Environmental Health, 29(3). doi:10.1515/reveh-2014-0067 es_ES
dc.description.references Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022 es_ES
dc.description.references Lee, A.-Y., Joo, H.-J., Chey, W.-Y., & Kim, Y.-G. (2001). Photopatch Testing in Seven Cases of Photosensitive Drug Eruptions. Annals of Pharmacotherapy, 35(12), 1584-1587. doi:10.1345/aph.1a007 es_ES
dc.description.references Lee, A.-Y., Yoo, S.-H., & Lee, K.-H. (1999). A case of photoallergic drug eruption caused by triflusal (Disgren®). Photodermatology, Photoimmunology & Photomedicine, 15(2), 85-86. doi:10.1111/j.1600-0781.1999.tb00062.x es_ES
dc.description.references Moore, D. E. (1998). Mechanisms of photosensitization by phototoxic drugs. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 422(1), 165-173. doi:10.1016/s0027-5107(98)00189-4 es_ES
dc.description.references Moore, D. E. (2002). Drug-Induced Cutaneous Photosensitivity. Drug Safety, 25(5), 345-372. doi:10.2165/00002018-200225050-00004 es_ES
dc.description.references Nagore, E., Pérez-Ferriols, A., Sánchez-Motilla, J., Serrano, G., & Aliaga, A. (2000). Photosensitivity associated with treatment with triflusal. Journal of the European Academy of Dermatology and Venereology, 14(3), 219-221. doi:10.1046/j.1468-3083.2000.00074.x es_ES
dc.description.references Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 es_ES
dc.description.references Onoue, S., Ohtake, H., Suzuki, G., Seto, Y., Nishida, H., Hirota, M., … Kouzuki, H. (2016). Comparative study on prediction performance of photosafety testing tools on photoallergens. Toxicology in Vitro, 33, 147-152. doi:10.1016/j.tiv.2016.03.003 es_ES
dc.description.references Onoue, S., Seto, Y., Gandy, G., & Yamada, S. (2009). Drug-Induced Phototoxicity; An Early In Vitro Identification of Phototoxic Potential of New Drug Entities in Drug Discovery and Development. Current Drug Safety, 4(2), 123-136. doi:10.2174/157488609788173044 es_ES
dc.description.references Onoue, S., Seto, Y., Sato, H., Nishida, H., Hirota, M., Ashikaga, T., … Tokura, Y. (2017). Chemical photoallergy: photobiochemical mechanisms, classification, and risk assessments. Journal of Dermatological Science, 85(1), 4-11. doi:10.1016/j.jdermsci.2016.08.005 es_ES
dc.description.references Onoue, S., Suzuki, G., Kato, M., Hirota, M., Nishida, H., Kitagaki, M., … Yamada, S. (2013). Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties. Toxicology in Vitro, 27(8), 2316-2324. doi:10.1016/j.tiv.2013.10.003 es_ES
dc.description.references Pérez-Ruiz, R., Molins-Molina, O., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559 es_ES
dc.description.references Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. . (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327-341. doi:10.1016/0021-9991(77)90098-5 es_ES
dc.description.references Schothorst, A. A., Van Steveninck, J., Went, L. N., & Suurmond, D. (1972). Photodynamic damage of the erythrocyte membrane caused by protoporphyrin in protoporphyria and in normal red blood cells. Clinica Chimica Acta, 39(1), 161-170. doi:10.1016/0009-8981(72)90312-9 es_ES
dc.description.references Stein, K. R., & Scheinfeld, N. S. (2007). Drug-induced photoallergic and phototoxic reactions. Expert Opinion on Drug Safety, 6(4), 431-443. doi:10.1517/14740338.6.4.431 es_ES
dc.description.references Tokura, Y. (2009). Photoallergy. Expert Review of Dermatology, 4(3), 263-270. doi:10.1586/edm.09.14 es_ES
dc.description.references Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., … Dupradeau, F.-Y. (2011). R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(suppl_2), W511-W517. doi:10.1093/nar/gkr288 es_ES
dc.description.references Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247-260. doi:10.1016/j.jmgm.2005.12.005 es_ES
dc.description.references Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174. doi:10.1002/jcc.20035 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem