Mostrar el registro sencillo del ítem
dc.contributor.author | Molins-Molina, Oscar | es_ES |
dc.contributor.author | Pérez Ruiz, Raúl | es_ES |
dc.contributor.author | Lence, Emilio | es_ES |
dc.contributor.author | González-Bello, Concepción | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.date.accessioned | 2020-12-11T04:32:54Z | |
dc.date.available | 2020-12-11T04:32:54Z | |
dc.date.issued | 2019-09-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156835 | |
dc.description.abstract | [EN] Triflusal is a platelet antiaggregant employed for the treatment and prevention of thromboembolic diseases. After administration, it is biotransformed into its active metabolite, the 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). We present here an investigation on HTB photobinding to human serum albumin (HSA), the most abundant protein in plasma, using an approach that combines fluorescence, MS/MS, and peptide fingerprint analysis as well as theoretical calculations (docking and molecular dynamics simulation studies). The proteomic analysis of HTB/HSA photolysates shows that HTB addition takes place at the epsilon-amino groups of the Lys137, Lys199, Lys205, Lys351, Lys432, Lys525, Lys541 and Lys545 residues and involves replacement of the trifluoromethyl moiety of HTB with a new amide function. Only Lys199 is located in an internal pocket of the protein, and the remaining modified residues are placed in the external part. Docking and molecular dynamic simulation studies reveal that HTB supramolecular binding to HSA occurs in the "V-cleft" region and that the process is assisted by the presence of Glu/Asp residues in the neighborhood of the external Lys, in agreement with the experimentally observed modifications. In principle, photobinding can occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects. | es_ES |
dc.description.sponsorship | We gratefully acknowledge financial support from the Spanish Government (CTQ2016-78875-P, SAF2016-75638-R, BES-2014-069404, and RETICS network ARADyAL RD16/0006/0030), the Generalitat Valenciana (PROMETEO/2017/075 and CIDEGENT/2018/044), the Xunta de Galicia [Centro Singular de Investigacion de Galicia accreditation 2016-2019 (ED431G/09), ED431B 2018/04 and post-doctoral fellowship to EL], and the European Union (European Regional Development Fund-ERDF). The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed PRB3 and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for use of the Finis Terrae computer. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Pharmacology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Triflusal metabolite | es_ES |
dc.subject | Human serum albumin | es_ES |
dc.subject | Fluorescence | es_ES |
dc.subject | Proteomic analysis | es_ES |
dc.subject | Docking and molecular dynamics | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphar.2019.01028 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2016-75638-R/ES/DESARROLLO DE NUEVOS FARMACOS PARA EL TRATAMIENTO DE LAS INFECCIONES BACTERIANAS MULTIRESISTENTES: APROXIMACIONES QUE INCIDEN SOBRE VIABILIDAD, RESISTENCIA Y VIRULENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED431G%2F09/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-069404/ES/BES-2014-069404/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Molins-Molina, O.; Pérez Ruiz, R.; Lence, E.; González-Bello, C.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2019). Photobinding of Triflusal to Human Serum Albumin Investigated by Fluorescence, Proteomic Analysis, and Computational Studies. Frontiers in Pharmacology. 10:1-9. https://doi.org/10.3389/fphar.2019.01028 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphar.2019.01028 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1663-9812 | es_ES |
dc.identifier.pmid | 31616294 | es_ES |
dc.identifier.pmcid | PMC6764118 | es_ES |
dc.relation.pasarela | S\396608 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e | es_ES |
dc.description.references | Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089-10092. doi:10.1063/1.464397 | es_ES |
dc.description.references | Deleo, V. A. (2004). Photocontact dermatitis. Dermatologic Therapy, 17(4), 279-288. doi:10.1111/j.1396-0296.2004.04026.x | es_ES |
dc.description.references | Díaz, N., Suárez, D., Sordo, T. L., & Merz, K. M. (2001). Molecular Dynamics Study of the IIA Binding Site in Human Serum Albumin: Influence of the Protonation State of Lys195 and Lys199. Journal of Medicinal Chemistry, 44(2), 250-260. doi:10.1021/jm000340v | es_ES |
dc.description.references | Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., … Cieplak, P. (2010). The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics, 12(28), 7821. doi:10.1039/c0cp00111b | es_ES |
dc.description.references | Epstein, J. H., & Wintroub, B. U. (1985). Photosensitivity Due to Drugs. Drugs, 30(1), 42-57. doi:10.2165/00003495-198530010-00005 | es_ES |
dc.description.references | Girotti, A. W. (2001). Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 103-113. doi:10.1016/s1011-1344(01)00207-x | es_ES |
dc.description.references | Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368-W371. doi:10.1093/nar/gki464 | es_ES |
dc.description.references | Honari, G. (2014). Photoallergy. Reviews on Environmental Health, 29(3). doi:10.1515/reveh-2014-0067 | es_ES |
dc.description.references | Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374-380. doi:10.1016/j.cpc.2012.09.022 | es_ES |
dc.description.references | Lee, A.-Y., Joo, H.-J., Chey, W.-Y., & Kim, Y.-G. (2001). Photopatch Testing in Seven Cases of Photosensitive Drug Eruptions. Annals of Pharmacotherapy, 35(12), 1584-1587. doi:10.1345/aph.1a007 | es_ES |
dc.description.references | Lee, A.-Y., Yoo, S.-H., & Lee, K.-H. (1999). A case of photoallergic drug eruption caused by triflusal (Disgren®). Photodermatology, Photoimmunology & Photomedicine, 15(2), 85-86. doi:10.1111/j.1600-0781.1999.tb00062.x | es_ES |
dc.description.references | Moore, D. E. (1998). Mechanisms of photosensitization by phototoxic drugs. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 422(1), 165-173. doi:10.1016/s0027-5107(98)00189-4 | es_ES |
dc.description.references | Moore, D. E. (2002). Drug-Induced Cutaneous Photosensitivity. Drug Safety, 25(5), 345-372. doi:10.2165/00002018-200225050-00004 | es_ES |
dc.description.references | Nagore, E., Pérez-Ferriols, A., Sánchez-Motilla, J., Serrano, G., & Aliaga, A. (2000). Photosensitivity associated with treatment with triflusal. Journal of the European Academy of Dermatology and Venereology, 14(3), 219-221. doi:10.1046/j.1468-3083.2000.00074.x | es_ES |
dc.description.references | Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 | es_ES |
dc.description.references | Onoue, S., Ohtake, H., Suzuki, G., Seto, Y., Nishida, H., Hirota, M., … Kouzuki, H. (2016). Comparative study on prediction performance of photosafety testing tools on photoallergens. Toxicology in Vitro, 33, 147-152. doi:10.1016/j.tiv.2016.03.003 | es_ES |
dc.description.references | Onoue, S., Seto, Y., Gandy, G., & Yamada, S. (2009). Drug-Induced Phototoxicity; An Early In Vitro Identification of Phototoxic Potential of New Drug Entities in Drug Discovery and Development. Current Drug Safety, 4(2), 123-136. doi:10.2174/157488609788173044 | es_ES |
dc.description.references | Onoue, S., Seto, Y., Sato, H., Nishida, H., Hirota, M., Ashikaga, T., … Tokura, Y. (2017). Chemical photoallergy: photobiochemical mechanisms, classification, and risk assessments. Journal of Dermatological Science, 85(1), 4-11. doi:10.1016/j.jdermsci.2016.08.005 | es_ES |
dc.description.references | Onoue, S., Suzuki, G., Kato, M., Hirota, M., Nishida, H., Kitagaki, M., … Yamada, S. (2013). Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties. Toxicology in Vitro, 27(8), 2316-2324. doi:10.1016/j.tiv.2013.10.003 | es_ES |
dc.description.references | Pérez-Ruiz, R., Molins-Molina, O., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559 | es_ES |
dc.description.references | Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. . (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327-341. doi:10.1016/0021-9991(77)90098-5 | es_ES |
dc.description.references | Schothorst, A. A., Van Steveninck, J., Went, L. N., & Suurmond, D. (1972). Photodynamic damage of the erythrocyte membrane caused by protoporphyrin in protoporphyria and in normal red blood cells. Clinica Chimica Acta, 39(1), 161-170. doi:10.1016/0009-8981(72)90312-9 | es_ES |
dc.description.references | Stein, K. R., & Scheinfeld, N. S. (2007). Drug-induced photoallergic and phototoxic reactions. Expert Opinion on Drug Safety, 6(4), 431-443. doi:10.1517/14740338.6.4.431 | es_ES |
dc.description.references | Tokura, Y. (2009). Photoallergy. Expert Review of Dermatology, 4(3), 263-270. doi:10.1586/edm.09.14 | es_ES |
dc.description.references | Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J. C., … Dupradeau, F.-Y. (2011). R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(suppl_2), W511-W517. doi:10.1093/nar/gkr288 | es_ES |
dc.description.references | Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247-260. doi:10.1016/j.jmgm.2005.12.005 | es_ES |
dc.description.references | Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157-1174. doi:10.1002/jcc.20035 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |