- -

Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion

Mostrar el registro completo del ítem

Dalmau, ME.; Eim, V.; Rosselló, C.; Carcel, JA.; Simal, S. (2019). Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion. Food & Function. 10(6):3209-3223. https://doi.org/10.1039/c8fo02421a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156841

Ficheros en el ítem

Metadatos del ítem

Título: Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion
Autor: Dalmau, María Esperanza Eim, Valeria Rosselló, Carmen Carcel, Juan A. Simal, Susana
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Drying may alter the microstructure of vegetables and influence the release of bioactive compounds during digestion. The effects of convective drying (at 60 degrees C and 2 m s(-1); CD) and freeze-drying (at -50 degrees ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Food & Function. (issn: 2042-650X )
DOI: 10.1039/c8fo02421a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8fo02421a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-03/ES/Revalorización integral de subproductos en función de sus usos potenciales. Extracción de compuestos de interés mediante aplicación de Ultra Sonidos de Potencia y estudios de bioaccesibilidad in vitro/
info:eu-repo/grantAgreement/CAIB//FPI%2F1814%2F2015/
Agradecimientos:
The authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA), co-financed with the ERDF funds (RTA2015-00060-C04-03), and the Balearic Government for the ...[+]
Tipo: Artículo

References

Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., … Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46-55. doi:10.1016/j.jfca.2015.03.005

Kamiloglu, S., Grootaert, C., Capanoglu, E., Ozkan, C., Smagghe, G., Raes, K., & Van Camp, J. (2016). Anti-inflammatory potential of black carrot (Daucus carotaL.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research, 61(2), 1600455. doi:10.1002/mnfr.201600455

K. Ruse , T.Rakcejeva , R.Galoburda and L.Dukalska , Anthocyanin content in Latvian cranberries dried in convective and microwave vacuum driers , in Research for Rural Development , 2011 , pp. 100–106 [+]
Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., … Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46-55. doi:10.1016/j.jfca.2015.03.005

Kamiloglu, S., Grootaert, C., Capanoglu, E., Ozkan, C., Smagghe, G., Raes, K., & Van Camp, J. (2016). Anti-inflammatory potential of black carrot (Daucus carotaL.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research, 61(2), 1600455. doi:10.1002/mnfr.201600455

K. Ruse , T.Rakcejeva , R.Galoburda and L.Dukalska , Anthocyanin content in Latvian cranberries dried in convective and microwave vacuum driers , in Research for Rural Development , 2011 , pp. 100–106

Bezerra, C. V., Meller da Silva, L. H., Corrêa, D. F., & Rodrigues, A. M. C. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750-755. doi:10.1016/j.ijheatmasstransfer.2015.02.027

García-Alvarado, M. A., Pacheco-Aguirre, F. M., & Ruiz-López, I. I. (2014). Analytical solution of simultaneous heat and mass transfer equations during food drying. Journal of Food Engineering, 142, 39-45. doi:10.1016/j.jfoodeng.2014.06.001

Padma Ishwarya, S., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171-180. doi:10.1016/j.jfoodeng.2014.10.011

J. C. Russ , Image analysis of food microstructure , in Computer Vision Technology in the Food and Beverage Industries , 2012 , pp. 233–252

Zhang, Z., Wang, X., Li, Y., Wei, Q., Liu, C., Nie, M., … Jiang, N. (2017). Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes. Food & Function, 8(12), 4693-4702. doi:10.1039/c7fo01382e

Paustenbach, D. J. (2000). THE PRACTICE OF EXPOSURE ASSESSMENT: A STATE-OF-THE-ART REVIEW. Journal of Toxicology and Environmental Health, Part B, 3(3), 179-291. doi:10.1080/10937400050045264

Barba, F. J., Mariutti, L. R. B., Bragagnolo, N., Mercadante, A. Z., Barbosa-Cánovas, G. V., & Orlien, V. (2017). Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology, 67, 195-206. doi:10.1016/j.tifs.2017.07.006

Zahir, M., Fogliano, V., & Capuano, E. (2018). Food matrix and processing modulatein vitroprotein digestibility in soybeans. Food & Function, 9(12), 6326-6336. doi:10.1039/c8fo01385c

Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001

Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics, 8(1), 50-59. doi:10.1007/s11483-013-9283-6

Devaux, M. ., Robert, P., Melcion, J. ., & Le Deschault de Monredon, F. (1997). Particle size analysis of bulk powders using mathematical morphology. Powder Technology, 90(2), 141-147. doi:10.1016/s0032-5910(96)03217-2

Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the Drying Process of Carrot (Daucus carotav. Nantes) on the Basis of Quality Criteria. Drying Technology, 31(8), 951-962. doi:10.1080/07373937.2012.707162

González-Centeno, M. R., Comas-Serra, F., Femenia, A., Rosselló, C., & Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22, 506-514. doi:10.1016/j.ultsonch.2014.05.027

Moreira, D., Gullón, B., Gullón, P., Gomes, A., & Tavaria, F. (2016). Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food & Function, 7(7), 3273-3282. doi:10.1039/c6fo00553e

Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845. doi:10.1016/j.jfoodeng.2005.11.024

Carnachan, S. M., Bootten, T. J., Mishra, S., Monro, J. A., & Sims, I. M. (2012). Effects of simulated digestion in vitro on cell wall polysaccharides from kiwifruit (Actinidia spp.). Food Chemistry, 133(1), 132-139. doi:10.1016/j.foodchem.2011.12.084

Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.x

Van Buggenhout, S., Alminger, M., Lemmens, L., Colle, I., Knockaert, G., Moelants, K., … Hendrickx, M. (2010). In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology, 21(12), 607-618. doi:10.1016/j.tifs.2010.09.010

Jeffery, J., Holzenburg, A., & King, S. (2012). Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. Journal of the Science of Food and Agriculture, 92(13), 2594-2602. doi:10.1002/jsfa.5767

An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292-1300. doi:10.1016/j.foodchem.2015.11.033

Karunasena, H. C. P., Brown, R. J., Gu, Y. T., & Senadeera, W. (2015). Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying. Journal of Food Engineering, 146, 209-226. doi:10.1016/j.jfoodeng.2014.09.011

Rojas, M. L., & Augusto, P. E. D. (2018). Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT, 93, 102-108. doi:10.1016/j.lwt.2018.03.031

Smith, B. G., James, B. J., & Ho, C. A. L. (2007). Microstructural Characteristics of Dried Carrot Pieces and Real Time Observations during Their Exposure to Moisture. International Journal of Food Engineering, 3(4). doi:10.2202/1556-3758.1242

Lewicki, P. P., & Pawlak, G. (2003). Effect of Drying on Microstructure of Plant Tissue. Drying Technology, 21(4), 657-683. doi:10.1081/drt-120019057

Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. doi:10.1016/j.foodchem.2011.10.029

Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253-261. doi:10.1016/j.jfoodeng.2011.05.020

Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT, 88, 80-86. doi:10.1016/j.lwt.2017.08.032

Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2005). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5-6), 543-553. doi:10.1007/s00217-005-0135-6

Bornhorst, G. M., Chang, L. Q., Rutherfurd, S. M., Moughan, P. J., & Singh, R. P. (2013). Gastric emptying rate and chyme characteristics for cooked brown and white rice mealsin vivo. Journal of the Science of Food and Agriculture, 93(12), 2900-2908. doi:10.1002/jsfa.6160

Bornhorst, G. M., Roman, M. J., Dreschler, K. C., & Singh, R. P. (2013). Physical Property Changes in Raw and Roasted Almonds during Gastric Digestion In vivo and In vitro. Food Biophysics, 9(1), 39-48. doi:10.1007/s11483-013-9315-2

Mennah-Govela, Y. A., & Bornhorst, G. M. (2016). Acid and moisture uptake in steamed and boiled sweet potatoes and associated structural changes during in vitro gastric digestion. Food Research International, 88, 247-255. doi:10.1016/j.foodres.2015.12.012

Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and Betacyanins in Red Beetroot (Betavulgaris) Root:  Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. doi:10.1021/jf000523q

Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., Renard, C. M. G. C., & Coimbra, M. A. (2002). Composition of Phenolic Compounds in a Portuguese Pear (Pyrus communisL. Var. S. Bartolomeu) and Changes after Sun-Drying. Journal of Agricultural and Food Chemistry, 50(16), 4537-4544. doi:10.1021/jf020251m

Asami, D. K., Hong, Y.-J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241. doi:10.1021/jf020635c

González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047k

Sawicki, T., & Wiczkowski, W. (2018). The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chemistry, 259, 292-303. doi:10.1016/j.foodchem.2018.03.143

Raikos, V., McDonagh, A., Ranawana, V., & Duthie, G. (2016). Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Science and Human Wellness, 5(4), 191-198. doi:10.1016/j.fshw.2016.10.002

Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., & Pilizota, V. (2014). Effects of Sugar Addition on Total Polyphenol Content and Antioxidant Activity of Frozen and Freeze-Dried Apple Purée. Journal of Agricultural and Food Chemistry, 62(7), 1674-1682. doi:10.1021/jf405003u

Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. doi:10.1016/j.foodchem.2011.02.052

Kamiloglu, S., Pasli, A. A., Ozcelik, B., Van Camp, J., & Capanoglu, E. (2015). Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186, 74-82. doi:10.1016/j.foodchem.2014.12.046

Chen, J., Sun, H., Wang, Y., Wang, S., Tao, X., & Sun, A. (2014). Stability of Apple Polyphenols as a Function of Temperature and pH. International Journal of Food Properties, 17(8), 1742-1749. doi:10.1080/10942912.2012.678531

Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329-334. doi:10.1016/j.jff.2011.05.007

Fazzari, M., Fukumoto, L., Mazza, G., Livrea, M. A., Tesoriere, L., & Marco, L. D. (2008). In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus aviumL.). Journal of Agricultural and Food Chemistry, 56(10), 3561-3568. doi:10.1021/jf073506a

Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308-2312. doi:10.1021/jf0113833

Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33-43. doi:10.1016/j.jff.2015.01.020

Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39(7), 791-800. doi:10.1016/j.foodres.2006.02.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem