- -

Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dalmau, María Esperanza es_ES
dc.contributor.author Eim, Valeria es_ES
dc.contributor.author Rosselló, Carmen es_ES
dc.contributor.author Carcel, Juan A. es_ES
dc.contributor.author Simal, Susana es_ES
dc.date.accessioned 2020-12-11T04:33:12Z
dc.date.available 2020-12-11T04:33:12Z
dc.date.issued 2019-06-01 es_ES
dc.identifier.issn 2042-650X es_ES
dc.identifier.uri http://hdl.handle.net/10251/156841
dc.description.abstract [EN] Drying may alter the microstructure of vegetables and influence the release of bioactive compounds during digestion. The effects of convective drying (at 60 degrees C and 2 m s(-1); CD) and freeze-drying (at -50 degrees C and 30 Pa; FD) on the microstructure (evaluated using scanning electron microscopy (SEM) and image analyses with ImageJ software) of beetroot and the kinetics of biocompound release (total polyphenol content (TPC) and antioxidant activity (AA)) during 180 min of in vitro gastric digestion have been studied. Raw beetroot was used as the control. Drying promoted the collapse of cell walls causing volume shrinkage that resulted in a greater cell number per area unit; meanwhile in vitro digestion caused cell structure disruption, which resulted in a lower cell number per area unit. Drying promoted decreases of TPC (42% in CD and 29% in FD) and AA (66% in CD and 63% in FD) of beetroot. However, release of TPC and AA from dried samples during digestion was 82% (CD) and 76 (FD) % higher than from the raw sample. The Weibull model allowed the satisfactory modelling of the TPC and AA release kinetics (mean relative error of simulation lower than 8.5%). es_ES
dc.description.sponsorship The authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA), co-financed with the ERDF funds (RTA2015-00060-C04-03), and the Balearic Government for the research fellowship (FPI/1814/2015). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Food & Function es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8fo02421a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-03/ES/Revalorización integral de subproductos en función de sus usos potenciales. Extracción de compuestos de interés mediante aplicación de Ultra Sonidos de Potencia y estudios de bioaccesibilidad in vitro/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//FPI%2F1814%2F2015/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Dalmau, ME.; Eim, V.; Rosselló, C.; Carcel, JA.; Simal, S. (2019). Effects of convective drying and freeze-drying on the release of bioactive compounds from beetroot during in vitro gastric digestion. Food & Function. 10(6):3209-3223. https://doi.org/10.1039/c8fo02421a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8fo02421a es_ES
dc.description.upvformatpinicio 3209 es_ES
dc.description.upvformatpfin 3223 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 31044202 es_ES
dc.relation.pasarela S\405570 es_ES
dc.contributor.funder Govern Illes Balears es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., … Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46-55. doi:10.1016/j.jfca.2015.03.005 es_ES
dc.description.references Kamiloglu, S., Grootaert, C., Capanoglu, E., Ozkan, C., Smagghe, G., Raes, K., & Van Camp, J. (2016). Anti-inflammatory potential of black carrot (Daucus carotaL.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Molecular Nutrition & Food Research, 61(2), 1600455. doi:10.1002/mnfr.201600455 es_ES
dc.description.references K. Ruse , T.Rakcejeva , R.Galoburda and L.Dukalska , Anthocyanin content in Latvian cranberries dried in convective and microwave vacuum driers , in Research for Rural Development , 2011 , pp. 100–106 es_ES
dc.description.references Bezerra, C. V., Meller da Silva, L. H., Corrêa, D. F., & Rodrigues, A. M. C. (2015). A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85, 750-755. doi:10.1016/j.ijheatmasstransfer.2015.02.027 es_ES
dc.description.references García-Alvarado, M. A., Pacheco-Aguirre, F. M., & Ruiz-López, I. I. (2014). Analytical solution of simultaneous heat and mass transfer equations during food drying. Journal of Food Engineering, 142, 39-45. doi:10.1016/j.jfoodeng.2014.06.001 es_ES
dc.description.references Padma Ishwarya, S., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171-180. doi:10.1016/j.jfoodeng.2014.10.011 es_ES
dc.description.references J. C. Russ , Image analysis of food microstructure , in Computer Vision Technology in the Food and Beverage Industries , 2012 , pp. 233–252 es_ES
dc.description.references Zhang, Z., Wang, X., Li, Y., Wei, Q., Liu, C., Nie, M., … Jiang, N. (2017). Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes. Food & Function, 8(12), 4693-4702. doi:10.1039/c7fo01382e es_ES
dc.description.references Paustenbach, D. J. (2000). THE PRACTICE OF EXPOSURE ASSESSMENT: A STATE-OF-THE-ART REVIEW. Journal of Toxicology and Environmental Health, Part B, 3(3), 179-291. doi:10.1080/10937400050045264 es_ES
dc.description.references Barba, F. J., Mariutti, L. R. B., Bragagnolo, N., Mercadante, A. Z., Barbosa-Cánovas, G. V., & Orlien, V. (2017). Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology, 67, 195-206. doi:10.1016/j.tifs.2017.07.006 es_ES
dc.description.references Zahir, M., Fogliano, V., & Capuano, E. (2018). Food matrix and processing modulatein vitroprotein digestibility in soybeans. Food & Function, 9(12), 6326-6336. doi:10.1039/c8fo01385c es_ES
dc.description.references Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001 es_ES
dc.description.references Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in Vitro Bread Bolus Digestion with Varying Oral and Gastric Digestion Parameters. Food Biophysics, 8(1), 50-59. doi:10.1007/s11483-013-9283-6 es_ES
dc.description.references Devaux, M. ., Robert, P., Melcion, J. ., & Le Deschault de Monredon, F. (1997). Particle size analysis of bulk powders using mathematical morphology. Powder Technology, 90(2), 141-147. doi:10.1016/s0032-5910(96)03217-2 es_ES
dc.description.references Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the Drying Process of Carrot (Daucus carotav. Nantes) on the Basis of Quality Criteria. Drying Technology, 31(8), 951-962. doi:10.1080/07373937.2012.707162 es_ES
dc.description.references González-Centeno, M. R., Comas-Serra, F., Femenia, A., Rosselló, C., & Simal, S. (2015). Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): Experimental kinetics and modeling. Ultrasonics Sonochemistry, 22, 506-514. doi:10.1016/j.ultsonch.2014.05.027 es_ES
dc.description.references Moreira, D., Gullón, B., Gullón, P., Gomes, A., & Tavaria, F. (2016). Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage. Food & Function, 7(7), 3273-3282. doi:10.1039/c6fo00553e es_ES
dc.description.references Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836-845. doi:10.1016/j.jfoodeng.2005.11.024 es_ES
dc.description.references Carnachan, S. M., Bootten, T. J., Mishra, S., Monro, J. A., & Sims, I. M. (2012). Effects of simulated digestion in vitro on cell wall polysaccharides from kiwifruit (Actinidia spp.). Food Chemistry, 133(1), 132-139. doi:10.1016/j.foodchem.2011.12.084 es_ES
dc.description.references Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1), R6-R15. doi:10.1111/j.1750-3841.2010.01957.x es_ES
dc.description.references Van Buggenhout, S., Alminger, M., Lemmens, L., Colle, I., Knockaert, G., Moelants, K., … Hendrickx, M. (2010). In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology, 21(12), 607-618. doi:10.1016/j.tifs.2010.09.010 es_ES
dc.description.references Jeffery, J., Holzenburg, A., & King, S. (2012). Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. Journal of the Science of Food and Agriculture, 92(13), 2594-2602. doi:10.1002/jsfa.5767 es_ES
dc.description.references An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292-1300. doi:10.1016/j.foodchem.2015.11.033 es_ES
dc.description.references Karunasena, H. C. P., Brown, R. J., Gu, Y. T., & Senadeera, W. (2015). Application of meshfree methods to numerically simulate microscale deformations of different plant food materials during drying. Journal of Food Engineering, 146, 209-226. doi:10.1016/j.jfoodeng.2014.09.011 es_ES
dc.description.references Rojas, M. L., & Augusto, P. E. D. (2018). Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT, 93, 102-108. doi:10.1016/j.lwt.2018.03.031 es_ES
dc.description.references Smith, B. G., James, B. J., & Ho, C. A. L. (2007). Microstructural Characteristics of Dried Carrot Pieces and Real Time Observations during Their Exposure to Moisture. International Journal of Food Engineering, 3(4). doi:10.2202/1556-3758.1242 es_ES
dc.description.references Lewicki, P. P., & Pawlak, G. (2003). Effect of Drying on Microstructure of Plant Tissue. Drying Technology, 21(4), 657-683. doi:10.1081/drt-120019057 es_ES
dc.description.references Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. doi:10.1016/j.foodchem.2011.10.029 es_ES
dc.description.references Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253-261. doi:10.1016/j.jfoodeng.2011.05.020 es_ES
dc.description.references Ng, M. L., & Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT, 88, 80-86. doi:10.1016/j.lwt.2017.08.032 es_ES
dc.description.references Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2005). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5-6), 543-553. doi:10.1007/s00217-005-0135-6 es_ES
dc.description.references Bornhorst, G. M., Chang, L. Q., Rutherfurd, S. M., Moughan, P. J., & Singh, R. P. (2013). Gastric emptying rate and chyme characteristics for cooked brown and white rice mealsin vivo. Journal of the Science of Food and Agriculture, 93(12), 2900-2908. doi:10.1002/jsfa.6160 es_ES
dc.description.references Bornhorst, G. M., Roman, M. J., Dreschler, K. C., & Singh, R. P. (2013). Physical Property Changes in Raw and Roasted Almonds during Gastric Digestion In vivo and In vitro. Food Biophysics, 9(1), 39-48. doi:10.1007/s11483-013-9315-2 es_ES
dc.description.references Mennah-Govela, Y. A., & Bornhorst, G. M. (2016). Acid and moisture uptake in steamed and boiled sweet potatoes and associated structural changes during in vitro gastric digestion. Food Research International, 88, 247-255. doi:10.1016/j.foodres.2015.12.012 es_ES
dc.description.references Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and Betacyanins in Red Beetroot (Betavulgaris) Root:  Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. doi:10.1021/jf000523q es_ES
dc.description.references Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., Renard, C. M. G. C., & Coimbra, M. A. (2002). Composition of Phenolic Compounds in a Portuguese Pear (Pyrus communisL. Var. S. Bartolomeu) and Changes after Sun-Drying. Journal of Agricultural and Food Chemistry, 50(16), 4537-4544. doi:10.1021/jf020251m es_ES
dc.description.references Asami, D. K., Hong, Y.-J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the Total Phenolic and Ascorbic Acid Content of Freeze-Dried and Air-Dried Marionberry, Strawberry, and Corn Grown Using Conventional, Organic, and Sustainable Agricultural Practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241. doi:10.1021/jf020635c es_ES
dc.description.references González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047k es_ES
dc.description.references Sawicki, T., & Wiczkowski, W. (2018). The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chemistry, 259, 292-303. doi:10.1016/j.foodchem.2018.03.143 es_ES
dc.description.references Raikos, V., McDonagh, A., Ranawana, V., & Duthie, G. (2016). Processed beetroot (Beta vulgaris L.) as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes. Food Science and Human Wellness, 5(4), 191-198. doi:10.1016/j.fshw.2016.10.002 es_ES
dc.description.references Loncaric, A., Dugalic, K., Mihaljevic, I., Jakobek, L., & Pilizota, V. (2014). Effects of Sugar Addition on Total Polyphenol Content and Antioxidant Activity of Frozen and Freeze-Dried Apple Purée. Journal of Agricultural and Food Chemistry, 62(7), 1674-1682. doi:10.1021/jf405003u es_ES
dc.description.references Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. doi:10.1016/j.foodchem.2011.02.052 es_ES
dc.description.references Kamiloglu, S., Pasli, A. A., Ozcelik, B., Van Camp, J., & Capanoglu, E. (2015). Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chemistry, 186, 74-82. doi:10.1016/j.foodchem.2014.12.046 es_ES
dc.description.references Chen, J., Sun, H., Wang, Y., Wang, S., Tao, X., & Sun, A. (2014). Stability of Apple Polyphenols as a Function of Temperature and pH. International Journal of Food Properties, 17(8), 1742-1749. doi:10.1080/10942912.2012.678531 es_ES
dc.description.references Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329-334. doi:10.1016/j.jff.2011.05.007 es_ES
dc.description.references Fazzari, M., Fukumoto, L., Mazza, G., Livrea, M. A., Tesoriere, L., & Marco, L. D. (2008). In Vitro Bioavailability of Phenolic Compounds from Five Cultivars of Frozen Sweet Cherries (Prunus aviumL.). Journal of Agricultural and Food Chemistry, 56(10), 3561-3568. doi:10.1021/jf073506a es_ES
dc.description.references Pérez-Vicente, A., Gil-Izquierdo, A., & García-Viguera, C. (2002). In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. Journal of Agricultural and Food Chemistry, 50(8), 2308-2312. doi:10.1021/jf0113833 es_ES
dc.description.references Rodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33-43. doi:10.1016/j.jff.2015.01.020 es_ES
dc.description.references Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39(7), 791-800. doi:10.1016/j.foodres.2006.02.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem