- -

Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation

Show simple item record

Files in this item

dc.contributor.author Gregori Verdú, Santiago es_ES
dc.contributor.author Tur Valiente, Manuel es_ES
dc.contributor.author Tarancón Caro, José Enrique es_ES
dc.contributor.author Fuenmayor Fernández, Francisco-Javier es_ES
dc.date.accessioned 2020-12-11T04:33:25Z
dc.date.available 2020-12-11T04:33:25Z
dc.date.issued 2019-04-03 es_ES
dc.identifier.issn 0042-3114 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156845
dc.description "This is an Accepted Manuscript of an article published by Taylor & Francis inVehicle System Dynamics on APR 3 2019, available online: https://www.tandfonline.com/doi/full/10.1080/00423114.2018.1473617." es_ES
dc.description.abstract [EN] The simulation of the pantograph-catenary dynamic interaction is at present mainly based on deterministic approaches. However, any errors made during the catenary stringing process are sources of variability that can affect the dynamic performance of the system. In this paper, we analyse the influence of dropper length, dropper spacing and support height errors on the current collection quality by applying a classic Monte Carlo method to obtain the probability density functions of several output quantities. The effects of installation errors are also studied for a range of train speeds. Finally, the pre-sag that, on average, produces the best behaviour of the system is identified, allowing for the uncertainty in the catenary installation. The results obtained show the convenience to consider variability in pantograph-catenary dynamic simulations. es_ES
dc.description.sponsorship The authors would like to acknowledge the financial support received from the FPU program offered by the Spanish Ministry of Education, Culture and Sports (Ministerio de Educacion, Cultura y Deportes) [grant number FPU13/04191]. The funding provided by the Regional Government of Valencia (Generalitat Valenciana) [PROMETEO/2016/007] and the Spanish Ministry of Economy, Industry and Competitiveness (Ministerio de Economia, Industria y Competitividad) [TRA2017-84736-R] is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Vehicle System Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stochastic simulations es_ES
dc.subject Monte Carlo method es_ES
dc.subject Pantograph-catenary interaction es_ES
dc.subject Uncertainty propagation es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00423114.2018.1473617 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F04191/ES/FPU13%2F04191/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84736-R/ES/DESARROLLO DE UN SISTEMA DE ENSAYOS HIL DE PANTOGRAFOS CON CATENARIAS VIRTUALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Gregori Verdú, S.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, F. (2019). Stochastic Monte Carlo simulations of the pantograph-catenary dynamic interaction to allow for uncertainties introduced during catenary installation. Vehicle System Dynamics. 57(4):471-492. https://doi.org/10.1080/00423114.2018.1473617 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00423114.2018.1473617 es_ES
dc.description.upvformatpinicio 471 es_ES
dc.description.upvformatpfin 492 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\368816 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183 es_ES
dc.description.references Gregori, S., Tur, M., Nadal, E., & Fuenmayor, F. J. (2017). An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics, 56(8), 1162-1186. doi:10.1080/00423114.2017.1407434 es_ES
dc.description.references Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286 es_ES
dc.description.references Shabana, A. A. (1998). Nonlinear Dynamics, 16(3), 293-306. doi:10.1023/a:1008072517368 es_ES
dc.description.references Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015 es_ES
dc.description.references Ambrósio, J., Pombo, J., Antunes, P., & Pereira, M. (2014). PantoCat statement of method. Vehicle System Dynamics, 53(3), 314-328. doi:10.1080/00423114.2014.969283 es_ES
dc.description.references Herrador, M. Á., Asuero, A. G., & González, A. G. (2005). Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method: An overview. Chemometrics and Intelligent Laboratory Systems, 79(1-2), 115-122. doi:10.1016/j.chemolab.2005.04.010 es_ES
dc.description.references Dudley, R. M. (1978). Central Limit Theorems for Empirical Measures. The Annals of Probability, 6(6), 899-929. doi:10.1214/aop/1176995384 es_ES
dc.description.references Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distributions. Computational Statistics & Data Analysis, 50(3), 775-782. doi:10.1016/j.csda.2004.10.003 es_ES
dc.description.references Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Bootstrap. doi:10.1201/9780429246593 es_ES
dc.description.references Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.002 es_ES


This item appears in the following Collection(s)

Show simple item record