Alba, G., Pereda, E., Mañas, S., Méndez, L. D., Duque, M. R., González, A., & González, J. J. (2016). The variability of EEG functional connectivity of young ADHD subjects in different resting states. Clinical Neurophysiology, 127(2), 1321-1330. doi:10.1016/j.clinph.2015.09.134
Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69-77. doi:10.1016/j.biopsycho.2016.01.010
Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617-624. doi:10.1007/s00421-010-1393-y
[+]
Alba, G., Pereda, E., Mañas, S., Méndez, L. D., Duque, M. R., González, A., & González, J. J. (2016). The variability of EEG functional connectivity of young ADHD subjects in different resting states. Clinical Neurophysiology, 127(2), 1321-1330. doi:10.1016/j.clinph.2015.09.134
Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69-77. doi:10.1016/j.biopsycho.2016.01.010
Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617-624. doi:10.1007/s00421-010-1393-y
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2012). Tracking Whole-Brain Connectivity Dynamics in the Resting State. Cerebral Cortex, 24(3), 663-676. doi:10.1093/cercor/bhs352
Barttfeld, P., Petroni, A., Báez, S., Urquina, H., Sigman, M., Cetkovich, M., … Ibañez, A. (2014). Functional Connectivity and Temporal Variability of Brain Connections in Adults with Attention Deficit/Hyperactivity Disorder and Bipolar Disorder. Neuropsychobiology, 69(2), 65-75. doi:10.1159/000356964
CAÑAS, J., QUESADA, J., ANTOLÍ, A., & FAJARDO, I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46(5), 482-501. doi:10.1080/0014013031000061640
Carrillo-de-la-Peña, M. T., & García-Larrea, L. (2007). Right frontal event related EEG coherence (ERCoh) differentiates good from bad performers of the Wisconsin Card Sorting Test (WCST). Neurophysiologie Clinique/Clinical Neurophysiology, 37(2), 63-75. doi:10.1016/j.neucli.2007.02.002
Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis. Clinical Neurophysiology, 122(12), 2375-2383. doi:10.1016/j.clinph.2011.05.004
Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. NeuroImage, 72, 227-236. doi:10.1016/j.neuroimage.2013.01.049
Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. NeuroImage, 68, 93-104. doi:10.1016/j.neuroimage.2012.11.038
Chen, Y., Wang, W., Zhao, X., Sha, M., Liu, Y., Zhang, X., … Ming, D. (2017). Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis. Frontiers in Aging Neuroscience, 9. doi:10.3389/fnagi.2017.00203
Contreras, M. J., Colom, R., Hernández, J. M., & Santacreu, J. (2003). Is Static Spatial Performance Distinguishable From Dynamic Spatial Performance? A Latent-Variable Analysis. The Journal of General Psychology, 130(3), 277-288. doi:10.1080/00221300309601159
Cooper, P. S., Wong, A. S. W., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., & Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage, 108, 354-363. doi:10.1016/j.neuroimage.2014.12.028
De Carvalho, J. L. A., da Rocha, A. F., de Oliveira Nascimento, F. A., Neto, J. S., & Junqueira, L. F. (s. f.). Development of a Matlab software for analysis of heart rate variability. 6th International Conference on Signal Processing, 2002. doi:10.1109/icosp.2002.1180076
De Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., … Corbetta, M. (2010). Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences, 107(13), 6040-6045. doi:10.1073/pnas.0913863107
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009
Dennis, J. P., & Vander Wal, J. S. (2009). The Cognitive Flexibility Inventory: Instrument Development and Estimates of Reliability and Validity. Cognitive Therapy and Research, 34(3), 241-253. doi:10.1007/s10608-009-9276-4
Duschek, S., Muckenthaler, M., Werner, N., & Reyes del Paso, G. A. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81(2), 110-117. doi:10.1016/j.biopsycho.2009.03.003
Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012). Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences, 109(31), 12788-12793. doi:10.1073/pnas.1204185109
Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046-10051. doi:10.1073/pnas.0604187103
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673-9678. doi:10.1073/pnas.0504136102
Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The Importance of Being Variable. Journal of Neuroscience, 31(12), 4496-4503. doi:10.1523/jneurosci.5641-10.2011
Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74-82. doi:10.1016/j.tics.2008.11.006
González-Hernández, J. A., Pita-Alcorta, C., Cedeño, I., Bosch-Bayard, J., Galán-Garcia, L., Scherbaum, W. A., & Figueredo-Rodriguez, P. (2002). Wisconsin card sorting test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions. Human Brain Mapping, 17(1), 37-47. doi:10.1002/hbm.10051
Hansen, A. L., Johnsen, B. H., Sollers, J. J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. European Journal of Applied Physiology, 93(3), 263-272. doi:10.1007/s00421-004-1208-0
Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48(3), 263-274. doi:10.1016/s0167-8760(03)00073-4
Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2009). Relationship between heart rate variability and cognitive function during threat of shock. Anxiety, Stress & Coping, 22(1), 77-89. doi:10.1080/10615800802272251
Hovland, A., Pallesen, S., Hammar, Å., Hansen, A. L., Thayer, J. F., Tarvainen, M. P., & Nordhus, I. H. (2012). The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. International Journal of Psychophysiology, 86(3), 269-275. doi:10.1016/j.ijpsycho.2012.10.004
Ionescu, T. (2012). Exploring the nature of cognitive flexibility. New Ideas in Psychology, 30(2), 190-200. doi:10.1016/j.newideapsych.2011.11.001
Jennings, J. R., Allen, B., Gianaros, P. J., Thayer, J. F., & Manuck, S. B. (2014). Focusing neurovisceral integration: Cognition, heart rate variability, and cerebral blood flow. Psychophysiology, 52(2), 214-224. doi:10.1111/psyp.12319
Jennings, J. R., Sheu, L. K., Kuan, D. C.-H., Manuck, S. B., & Gianaros, P. J. (2015). Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology, 53(4), 444-454. doi:10.1111/psyp.12586
Jia, H., Hu, X., & Deshpande, G. (2014). Behavioral Relevance of the Dynamics of the Functional Brain Connectome. Brain Connectivity, 4(9), 741-759. doi:10.1089/brain.2014.0300
Kitzbichler, M. G., Smith, M. L., Christensen, S. R., & Bullmore, E. (2009). Broadband Criticality of Human Brain Network Synchronization. PLoS Computational Biology, 5(3), e1000314. doi:10.1371/journal.pcbi.1000314
Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471-480. doi:10.1016/j.neuroimage.2014.06.044
Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M., & Michel, C. . (2003). Epileptic source localization with high density EEG: how many electrodes are needed? Clinical Neurophysiology, 114(1), 63-69. doi:10.1016/s1388-2457(02)00337-1
Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences, 100(19), 11053-11058. doi:10.1073/pnas.1831638100
Liu, J., Liao, X., Xia, M., & He, Y. (2017). Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Human Brain Mapping, 39(2), 902-915. doi:10.1002/hbm.23890
Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive Reasoning Training Alters Patterns of Brain Connectivity at Rest. Journal of Neuroscience, 33(11), 4796-4803. doi:10.1523/jneurosci.4141-12.2013
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868
Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences, 104(32), 13170-13175. doi:10.1073/pnas.0700668104
Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Álvarez-Linera, J., Román, F. J., … Colom, R. (2012). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34(12), 3143-3157. doi:10.1002/hbm.22129
McDonough, I. M., & Nashiro, K. (2014). Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00409
McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development. PLoS Computational Biology, 4(7), e1000106. doi:10.1371/journal.pcbi.1000106
Mennes, M., Kelly, C., Zuo, X.-N., Di Martino, A., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. NeuroImage, 50(4), 1690-1701. doi:10.1016/j.neuroimage.2010.01.002
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex «Frontal Lobe» Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49-100. doi:10.1006/cogp.1999.0734
Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology, 121(9), 1438-1446. doi:10.1016/j.clinph.2010.03.025
Monti, R. P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., & Montana, G. (2014). Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage, 103, 427-443. doi:10.1016/j.neuroimage.2014.07.033
Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen, K., & Palva, S. (2013). Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proceedings of the National Academy of Sciences, 110(9), 3585-3590. doi:10.1073/pnas.1216855110
Perakakis, P., Joffily, M., Taylor, M., Guerra, P., & Vila, J. (2010). KARDIA: A Matlab software for the analysis of cardiac interbeat intervals. Computer Methods and Programs in Biomedicine, 98(1), 83-89. doi:10.1016/j.cmpb.2009.10.002
Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology, 84(1), 1-14. doi:10.1016/s0167-5273(02)00057-8
Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37(4), 1083-1090. doi:10.1016/j.neuroimage.2007.02.041
Ramon, C., & Holmes, M. D. (2012). Noninvasive Localization of Epileptic Sites from Stable Phase Synchronization Patterns on Different Days Derived from Short Duration Interictal Scalp dEEG. Brain Topography, 26(1), 1-8. doi:10.1007/s10548-012-0236-z
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039
Sadaghiani, S., & Kleinschmidt, A. (2016). Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends in Cognitive Sciences, 20(11), 805-817. doi:10.1016/j.tics.2016.09.004
Sadaghiani, S., Poline, J.-B., Kleinschmidt, A., & D’Esposito, M. (2015). Ongoing dynamics in large-scale functional connectivity predict perception. Proceedings of the National Academy of Sciences, 112(27), 8463-8468. doi:10.1073/pnas.1420687112
Sakaki, M., Yoo, H. J., Nga, L., Lee, T.-H., Thayer, J. F., & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 44-52. doi:10.1016/j.neuroimage.2016.05.076
Saus, E.-R., Johnsen, B. H., Eid, J., Riisem, P. K., Andersen, R., & Thayer, J. F. (2006). The Effect of Brief Situational Awareness Training in a Police Shooting Simulator: An Experimental Study. Military Psychology, 18(sup1), S3-S21. doi:10.1207/s15327876mp1803s_2
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. Journal of Neuroscience, 27(9), 2349-2356. doi:10.1523/jneurosci.5587-06.2007
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274-296. doi:10.1016/j.neubiorev.2017.02.003
Stenfors, C. U. D., Hanson, L. M., Theorell, T., & Osika, W. S. (2016). Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.01536
Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00015
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Effects of Training of Processing Speed on Neural Systems. Journal of Neuroscience, 31(34), 12139-12148. doi:10.1523/jneurosci.2948-11.2011
Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). The Non-invasive Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability. Handbook of Behavioral Medicine, 723-740. doi:10.1007/978-0-387-09488-5_47
Thayer, J. F., Hansen, A. L., Sollers III, J. J., & Johnsen, B. H. (2005). Heart rate variability as an index of prefrontal neural function in military settings. Biomonitoring for Physiological and Cognitive Performance during Military Operations. doi:10.1117/12.604420
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81-88. doi:10.1016/j.neubiorev.2008.08.004
Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. E. (2016). Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks. Journal of Cognitive Neuroscience, 28(4), 575-588. doi:10.1162/jocn_a_00916
Vakorin, V. A., Lippe, S., & McIntosh, A. R. (2011). Variability of Brain Signals Processed Locally Transforms into Higher Connectivity with Brain Development. Journal of Neuroscience, 31(17), 6405-6413. doi:10.1523/jneurosci.3153-10.2011
Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015). Default mode network connectivity during task execution. NeuroImage, 122, 96-104. doi:10.1016/j.neuroimage.2015.07.053
Yang, A. C., Huang, C.-C., Yeh, H.-L., Liu, M.-E., Hong, C.-J., Tu, P.-C., … Tsai, S.-J. (2013). Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiology of Aging, 34(2), 428-438. doi:10.1016/j.neurobiolaging.2012.05.004
Zahn, D., Adams, J., Krohn, J., Wenzel, M., Mann, C. G., Gomille, L. K., … Kubiak, T. (2016). Heart rate variability and self-control—A meta-analysis. Biological Psychology, 115, 9-26. doi:10.1016/j.biopsycho.2015.12.007
[-]