- -

The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alba, Guzmán es_ES
dc.contributor.author Vila, Jaime es_ES
dc.contributor.author Rey, Beatriz es_ES
dc.contributor.author Montoya, Pedro es_ES
dc.contributor.author Muñoz, Miguel Ángel es_ES
dc.date.accessioned 2020-12-11T04:34:23Z
dc.date.available 2020-12-11T04:34:23Z
dc.date.issued 2019-02-25 es_ES
dc.identifier.issn 1662-5161 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156864
dc.description.abstract [EN] The neurovisceral integration model proposes a neuronal network that is related to heart rate activity and cognitive performance. The aim of this study was to determine whether heart rate variability (HRV) and variability in electroencephalographic (EEG) functional connectivity in the resting state are related to cognitive flexibility. Thirty-eight right-handed students completed the CAMBIOS test, and their heart and EEG activity was recorded during 6 min in the resting state with their eyes open. We calculated correlations, partial correlations and multiple linear regressions among HRV indices, functional brain connectivity variability and CAMBIOS scores. Furthermore, the sample was divided into groups according to CAMBIOS performance, and one-way ANOVA was applied to evaluate group differences. Our results show direct and inverse correlations among cognitive flexibility, connectivity (positive and negative task networks) and heartbeat variability. Partial correlations and multiple linear regressions suggest that the relation between HRV and CAMBIOS performance is mediated by neuronal oscillations. ANOVA confirms that HRV and variability in functional brain connectivity is related to cognitive performance. In conclusion, the levels of brain signal variability might predict cognitive flexibility in a cognitive task, while HRV might predict cognitive flexibility only when it is mediated by neuronal oscillations. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness (PSI2014-57231-R). Research was funded by Grant Nos. PSI2014-57231-R and PSI2017-88388-C4-3-R from Spanish Ministry of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no competing interests exist. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Human Neuroscience es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject HRV es_ES
dc.subject EEG es_ES
dc.subject Resting-state es_ES
dc.subject Sample entropy es_ES
dc.subject Variability of functional connectivity es_ES
dc.subject Cognitive flexibility es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fnhum.2019.00064 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PSI2014-57231-R/ES/MODULACION AFECTIVA DE LA ACTIVIDAD CEREBRAL PARA ALIVIAR EL DOLOR: ESTUDIO DE LA CONECTIVIDAD FUNCIONAL MEDIANTE EEG/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/PSI2017-88388-C4-3-R/ES/CORRELATOS NEUROFISIOLOGICOS DEL ENTRENAMIENTO EN LA PERCEPCION NOCICEPTIVA MEDIANTE LA ILUSION DE UN MIEMBRO VIRTUAL./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Alba, G.; Vila, J.; Rey, B.; Montoya, P.; Muñoz, MÁ. (2019). The Relationship Between Heart Rate Variability and Electroencephalography Functional Connectivity Variability Is Associated With Cognitive Flexibility. Frontiers in Human Neuroscience. 13(64):1-12. https://doi.org/10.3389/fnhum.2019.00064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fnhum.2019.00064 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 64 es_ES
dc.identifier.pmid 30858800 es_ES
dc.identifier.pmcid PMC6397840 es_ES
dc.relation.pasarela S\391201 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Alba, G., Pereda, E., Mañas, S., Méndez, L. D., Duque, M. R., González, A., & González, J. J. (2016). The variability of EEG functional connectivity of young ADHD subjects in different resting states. Clinical Neurophysiology, 127(2), 1321-1330. doi:10.1016/j.clinph.2015.09.134 es_ES
dc.description.references Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69-77. doi:10.1016/j.biopsycho.2016.01.010 es_ES
dc.description.references Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617-624. doi:10.1007/s00421-010-1393-y es_ES
dc.description.references Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2012). Tracking Whole-Brain Connectivity Dynamics in the Resting State. Cerebral Cortex, 24(3), 663-676. doi:10.1093/cercor/bhs352 es_ES
dc.description.references Barttfeld, P., Petroni, A., Báez, S., Urquina, H., Sigman, M., Cetkovich, M., … Ibañez, A. (2014). Functional Connectivity and Temporal Variability of Brain Connections in Adults with Attention Deficit/Hyperactivity Disorder and Bipolar Disorder. Neuropsychobiology, 69(2), 65-75. doi:10.1159/000356964 es_ES
dc.description.references CAÑAS, J., QUESADA, J., ANTOLÍ, A., & FAJARDO, I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46(5), 482-501. doi:10.1080/0014013031000061640 es_ES
dc.description.references Carrillo-de-la-Peña, M. T., & García-Larrea, L. (2007). Right frontal event related EEG coherence (ERCoh) differentiates good from bad performers of the Wisconsin Card Sorting Test (WCST). Neurophysiologie Clinique/Clinical Neurophysiology, 37(2), 63-75. doi:10.1016/j.neucli.2007.02.002 es_ES
dc.description.references Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis. Clinical Neurophysiology, 122(12), 2375-2383. doi:10.1016/j.clinph.2011.05.004 es_ES
dc.description.references Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. NeuroImage, 72, 227-236. doi:10.1016/j.neuroimage.2013.01.049 es_ES
dc.description.references Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. NeuroImage, 68, 93-104. doi:10.1016/j.neuroimage.2012.11.038 es_ES
dc.description.references Chen, Y., Wang, W., Zhao, X., Sha, M., Liu, Y., Zhang, X., … Ming, D. (2017). Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis. Frontiers in Aging Neuroscience, 9. doi:10.3389/fnagi.2017.00203 es_ES
dc.description.references Contreras, M. J., Colom, R., Hernández, J. M., & Santacreu, J. (2003). Is Static Spatial Performance Distinguishable From Dynamic Spatial Performance? A Latent-Variable Analysis. The Journal of General Psychology, 130(3), 277-288. doi:10.1080/00221300309601159 es_ES
dc.description.references Cooper, P. S., Wong, A. S. W., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., & Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage, 108, 354-363. doi:10.1016/j.neuroimage.2014.12.028 es_ES
dc.description.references De Carvalho, J. L. A., da Rocha, A. F., de Oliveira Nascimento, F. A., Neto, J. S., & Junqueira, L. F. (s. f.). Development of a Matlab software for analysis of heart rate variability. 6th International Conference on Signal Processing, 2002. doi:10.1109/icosp.2002.1180076 es_ES
dc.description.references De Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., … Corbetta, M. (2010). Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences, 107(13), 6040-6045. doi:10.1073/pnas.0913863107 es_ES
dc.description.references Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009 es_ES
dc.description.references Dennis, J. P., & Vander Wal, J. S. (2009). The Cognitive Flexibility Inventory: Instrument Development and Estimates of Reliability and Validity. Cognitive Therapy and Research, 34(3), 241-253. doi:10.1007/s10608-009-9276-4 es_ES
dc.description.references Duschek, S., Muckenthaler, M., Werner, N., & Reyes del Paso, G. A. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81(2), 110-117. doi:10.1016/j.biopsycho.2009.03.003 es_ES
dc.description.references Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012). Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proceedings of the National Academy of Sciences, 109(31), 12788-12793. doi:10.1073/pnas.1204185109 es_ES
dc.description.references Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 10046-10051. doi:10.1073/pnas.0604187103 es_ES
dc.description.references Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673-9678. doi:10.1073/pnas.0504136102 es_ES
dc.description.references Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The Importance of Being Variable. Journal of Neuroscience, 31(12), 4496-4503. doi:10.1523/jneurosci.5641-10.2011 es_ES
dc.description.references Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74-82. doi:10.1016/j.tics.2008.11.006 es_ES
dc.description.references González-Hernández, J. A., Pita-Alcorta, C., Cedeño, I., Bosch-Bayard, J., Galán-Garcia, L., Scherbaum, W. A., & Figueredo-Rodriguez, P. (2002). Wisconsin card sorting test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions. Human Brain Mapping, 17(1), 37-47. doi:10.1002/hbm.10051 es_ES
dc.description.references Hansen, A. L., Johnsen, B. H., Sollers, J. J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: the effects of training and detraining. European Journal of Applied Physiology, 93(3), 263-272. doi:10.1007/s00421-004-1208-0 es_ES
dc.description.references Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48(3), 263-274. doi:10.1016/s0167-8760(03)00073-4 es_ES
dc.description.references Hansen, A. L., Johnsen, B. H., & Thayer, J. F. (2009). Relationship between heart rate variability and cognitive function during threat of shock. Anxiety, Stress & Coping, 22(1), 77-89. doi:10.1080/10615800802272251 es_ES
dc.description.references Hovland, A., Pallesen, S., Hammar, Å., Hansen, A. L., Thayer, J. F., Tarvainen, M. P., & Nordhus, I. H. (2012). The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. International Journal of Psychophysiology, 86(3), 269-275. doi:10.1016/j.ijpsycho.2012.10.004 es_ES
dc.description.references Ionescu, T. (2012). Exploring the nature of cognitive flexibility. New Ideas in Psychology, 30(2), 190-200. doi:10.1016/j.newideapsych.2011.11.001 es_ES
dc.description.references Jennings, J. R., Allen, B., Gianaros, P. J., Thayer, J. F., & Manuck, S. B. (2014). Focusing neurovisceral integration: Cognition, heart rate variability, and cerebral blood flow. Psychophysiology, 52(2), 214-224. doi:10.1111/psyp.12319 es_ES
dc.description.references Jennings, J. R., Sheu, L. K., Kuan, D. C.-H., Manuck, S. B., & Gianaros, P. J. (2015). Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology, 53(4), 444-454. doi:10.1111/psyp.12586 es_ES
dc.description.references Jia, H., Hu, X., & Deshpande, G. (2014). Behavioral Relevance of the Dynamics of the Functional Brain Connectome. Brain Connectivity, 4(9), 741-759. doi:10.1089/brain.2014.0300 es_ES
dc.description.references Kitzbichler, M. G., Smith, M. L., Christensen, S. R., & Bullmore, E. (2009). Broadband Criticality of Human Brain Network Synchronization. PLoS Computational Biology, 5(3), e1000314. doi:10.1371/journal.pcbi.1000314 es_ES
dc.description.references Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the default mode network tracks daydreaming. NeuroImage, 100, 471-480. doi:10.1016/j.neuroimage.2014.06.044 es_ES
dc.description.references Lantz, G., Grave de Peralta, R., Spinelli, L., Seeck, M., & Michel, C. . (2003). Epileptic source localization with high density EEG: how many electrodes are needed? Clinical Neurophysiology, 114(1), 63-69. doi:10.1016/s1388-2457(02)00337-1 es_ES
dc.description.references Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A., & Kleinschmidt, A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences, 100(19), 11053-11058. doi:10.1073/pnas.1831638100 es_ES
dc.description.references Liu, J., Liao, X., Xia, M., & He, Y. (2017). Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Human Brain Mapping, 39(2), 902-915. doi:10.1002/hbm.23890 es_ES
dc.description.references Mackey, A. P., Miller Singley, A. T., & Bunge, S. A. (2013). Intensive Reasoning Training Alters Patterns of Brain Connectivity at Rest. Journal of Neuroscience, 33(11), 4796-4803. doi:10.1523/jneurosci.4141-12.2013 es_ES
dc.description.references Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868 es_ES
dc.description.references Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences, 104(32), 13170-13175. doi:10.1073/pnas.0700668104 es_ES
dc.description.references Martínez, K., Solana, A. B., Burgaleta, M., Hernández-Tamames, J. A., Álvarez-Linera, J., Román, F. J., … Colom, R. (2012). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Human Brain Mapping, 34(12), 3143-3157. doi:10.1002/hbm.22129 es_ES
dc.description.references McDonough, I. M., & Nashiro, K. (2014). Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00409 es_ES
dc.description.references McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased Brain Signal Variability Accompanies Lower Behavioral Variability in Development. PLoS Computational Biology, 4(7), e1000106. doi:10.1371/journal.pcbi.1000106 es_ES
dc.description.references Mennes, M., Kelly, C., Zuo, X.-N., Di Martino, A., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. NeuroImage, 50(4), 1690-1701. doi:10.1016/j.neuroimage.2010.01.002 es_ES
dc.description.references Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex «Frontal Lobe» Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49-100. doi:10.1006/cogp.1999.0734 es_ES
dc.description.references Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology, 121(9), 1438-1446. doi:10.1016/j.clinph.2010.03.025 es_ES
dc.description.references Monti, R. P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., & Montana, G. (2014). Estimating time-varying brain connectivity networks from functional MRI time series. NeuroImage, 103, 427-443. doi:10.1016/j.neuroimage.2014.07.033 es_ES
dc.description.references Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen, K., & Palva, S. (2013). Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proceedings of the National Academy of Sciences, 110(9), 3585-3590. doi:10.1073/pnas.1216855110 es_ES
dc.description.references Perakakis, P., Joffily, M., Taylor, M., Guerra, P., & Vila, J. (2010). KARDIA: A Matlab software for the analysis of cardiac interbeat intervals. Computer Methods and Programs in Biomedicine, 98(1), 83-89. doi:10.1016/j.cmpb.2009.10.002 es_ES
dc.description.references Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology, 84(1), 1-14. doi:10.1016/s0167-5273(02)00057-8 es_ES
dc.description.references Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. NeuroImage, 37(4), 1083-1090. doi:10.1016/j.neuroimage.2007.02.041 es_ES
dc.description.references Ramon, C., & Holmes, M. D. (2012). Noninvasive Localization of Epileptic Sites from Stable Phase Synchronization Patterns on Different Days Derived from Short Duration Interictal Scalp dEEG. Brain Topography, 26(1), 1-8. doi:10.1007/s10548-012-0236-z es_ES
dc.description.references Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 es_ES
dc.description.references Sadaghiani, S., & Kleinschmidt, A. (2016). Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control. Trends in Cognitive Sciences, 20(11), 805-817. doi:10.1016/j.tics.2016.09.004 es_ES
dc.description.references Sadaghiani, S., Poline, J.-B., Kleinschmidt, A., & D’Esposito, M. (2015). Ongoing dynamics in large-scale functional connectivity predict perception. Proceedings of the National Academy of Sciences, 112(27), 8463-8468. doi:10.1073/pnas.1420687112 es_ES
dc.description.references Sakaki, M., Yoo, H. J., Nga, L., Lee, T.-H., Thayer, J. F., & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 44-52. doi:10.1016/j.neuroimage.2016.05.076 es_ES
dc.description.references Saus, E.-R., Johnsen, B. H., Eid, J., Riisem, P. K., Andersen, R., & Thayer, J. F. (2006). The Effect of Brief Situational Awareness Training in a Police Shooting Simulator: An Experimental Study. Military Psychology, 18(sup1), S3-S21. doi:10.1207/s15327876mp1803s_2 es_ES
dc.description.references Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. Journal of Neuroscience, 27(9), 2349-2356. doi:10.1523/jneurosci.5587-06.2007 es_ES
dc.description.references Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274-296. doi:10.1016/j.neubiorev.2017.02.003 es_ES
dc.description.references Stenfors, C. U. D., Hanson, L. M., Theorell, T., & Osika, W. S. (2016). Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults. Frontiers in Psychology, 7. doi:10.3389/fpsyg.2016.01536 es_ES
dc.description.references Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00015 es_ES
dc.description.references Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Effects of Training of Processing Speed on Neural Systems. Journal of Neuroscience, 31(34), 12139-12148. doi:10.1523/jneurosci.2948-11.2011 es_ES
dc.description.references Thayer, J. F., Hansen, A. L., & Johnsen, B. H. (2010). The Non-invasive Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability. Handbook of Behavioral Medicine, 723-740. doi:10.1007/978-0-387-09488-5_47 es_ES
dc.description.references Thayer, J. F., Hansen, A. L., Sollers III, J. J., & Johnsen, B. H. (2005). Heart rate variability as an index of prefrontal neural function in military settings. Biomonitoring for Physiological and Cognitive Performance during Military Operations. doi:10.1117/12.604420 es_ES
dc.description.references Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81-88. doi:10.1016/j.neubiorev.2008.08.004 es_ES
dc.description.references Thompson, T. W., Waskom, M. L., & Gabrieli, J. D. E. (2016). Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks. Journal of Cognitive Neuroscience, 28(4), 575-588. doi:10.1162/jocn_a_00916 es_ES
dc.description.references Vakorin, V. A., Lippe, S., & McIntosh, A. R. (2011). Variability of Brain Signals Processed Locally Transforms into Higher Connectivity with Brain Development. Journal of Neuroscience, 31(17), 6405-6413. doi:10.1523/jneurosci.3153-10.2011 es_ES
dc.description.references Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015). Default mode network connectivity during task execution. NeuroImage, 122, 96-104. doi:10.1016/j.neuroimage.2015.07.053 es_ES
dc.description.references Yang, A. C., Huang, C.-C., Yeh, H.-L., Liu, M.-E., Hong, C.-J., Tu, P.-C., … Tsai, S.-J. (2013). Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: a multiscale entropy analysis. Neurobiology of Aging, 34(2), 428-438. doi:10.1016/j.neurobiolaging.2012.05.004 es_ES
dc.description.references Zahn, D., Adams, J., Krohn, J., Wenzel, M., Mann, C. G., Gomille, L. K., … Kubiak, T. (2016). Heart rate variability and self-control—A meta-analysis. Biological Psychology, 115, 9-26. doi:10.1016/j.biopsycho.2015.12.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem