Mostrar el registro sencillo del ítem
dc.contributor.author | Vallespir, F. | es_ES |
dc.contributor.author | Rodríguez, O. | es_ES |
dc.contributor.author | Carcel, Juan A. | es_ES |
dc.contributor.author | Rosselló, C. | es_ES |
dc.contributor.author | Simal, S. | es_ES |
dc.date.accessioned | 2020-12-11T04:34:28Z | |
dc.date.available | 2020-12-11T04:34:28Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156866 | |
dc.description | "This is the peer reviewed version of the following article: Vallespir, Francisca, Óscar Rodríguez, Juan A Cárcel, Carmen Rosselló, and Susana Simal. 2019. Ultrasound Assisted Low-temperature Drying of Kiwifruit: Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity. Journal of the Science of Food and Agriculture 99 (6). Wiley: 2901 9. doi:10.1002/jsfa.9503, which has been published in final form at https://doi.org/10.1002/jsfa.9503. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Background: Low-temperature drying is considered to be a promising technique for food processing. It preserves thermolabile compounds and might be intensified by acoustic assistance. The effect of acoustic assistance (20.5 kW m(-3)) during low-temperature drying of kiwifruit (at 5, 10 and 15 degrees C, and 1 m s(-1)) on drying kinetics, bioactive compounds (such as ascorbic acid, vitamin E, and total polyphenols), and antioxidant activity was studied. Results: Drying time was shortened by 55-65% when using power ultrasound. A diffusion model was used to evaluate the drying kinetics. The effective diffusion coefficient increased by 154 +/- 30% and the external mass transfer coefficient increased by 158 +/- 66% when ultrasound was applied during drying, compared with drying without ultrasound application. With regard to bioactive compounds and antioxidant activity, although samples dried at 15 degrees C presented significantly higher (P < 0.05) losses (39-54% and 57-69%, respectively) than samples dried at 5 degrees C (14-43% and 23-50%, respectively) when ultrasound was not applied, the application of ultrasound during drying at 15 degrees C significantly reduced (P < 0.05) those losses in all quality parameters (15-47% and 47-58%, respectively). Conclusion: Overall, low-temperature drying of kiwifruit was enhanced by acoustic assistance preserving bioactive compounds and antioxidant activity, especially at 15 degrees C. (c) 2018 Society of Chemical Industry | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the financial support of the National Institute of Research and Agro-Food Technology (INIA) and co-financed with ERDF funds (RTA2015-00060-C04-03 and RTA2015-00060-C04-02 projects) and the Spanish Government (MINECO) for the BES-2013-064131 fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Kiwifruit | es_ES |
dc.subject | Low-temperature drying | es_ES |
dc.subject | Power ultrasound | es_ES |
dc.subject | Bioactive compounds | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.9503 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-03/ES/Revalorización integral de subproductos en función de sus usos potenciales. Extracción de compuestos de interés mediante aplicación de Ultra Sonidos de Potencia y estudios de bioaccesibilidad in vitro/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2013-064131/ES/BES-2013-064131/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Vallespir, F.; Rodríguez, O.; Carcel, JA.; Rosselló, C.; Simal, S. (2019). Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture. 99(6):2901-2909. https://doi.org/10.1002/jsfa.9503 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.9503 | es_ES |
dc.description.upvformatpinicio | 2901 | es_ES |
dc.description.upvformatpfin | 2909 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 99 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 30471127 | es_ES |
dc.relation.pasarela | S\383080 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.description.references | Soquetta, M. B., Stefanello, F. S., Huerta, K. da M., Monteiro, S. S., da Rosa, C. S., & Terra, N. N. (2016). Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit ( Actinidia deliciosa ). Food Chemistry, 199, 471-478. doi:10.1016/j.foodchem.2015.12.022 | es_ES |
dc.description.references | Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557-562. doi:10.1016/j.foodchem.2008.08.025 | es_ES |
dc.description.references | Fernández-Sestelo, A., de Saá, R. S., Pérez-Lamela, C., Torrado-Agrasar, A., Rúa, M. L., & Pastrana-Castro, L. (2013). Overall quality properties in pressurized kiwi purée: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science & Emerging Technologies, 20, 64-72. doi:10.1016/j.ifset.2013.06.009 | es_ES |
dc.description.references | Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003 | es_ES |
dc.description.references | Vallespir, F., Cárcel, J. A., Marra, F., Eim, V. S., & Simal, S. (2017). Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology, 11(1), 72-83. doi:10.1007/s11947-017-1999-8 | es_ES |
dc.description.references | Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008 | es_ES |
dc.description.references | Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001 | es_ES |
dc.description.references | Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533 | es_ES |
dc.description.references | Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14 | es_ES |
dc.description.references | García-Pérez, J. V., Carcel, J. A., Mulet, A., Riera, E., & Gallego-Juarez, J. A. (2015). Ultrasonic drying for food preservation. Power Ultrasonics, 875-910. doi:10.1016/b978-1-78242-028-6.00029-6 | es_ES |
dc.description.references | Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2011). Validation of a Difussion Model Using Moisture Profiles Measured by Means of TD-NMR in Apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542-552. doi:10.1007/s11947-011-0711-7 | es_ES |
dc.description.references | Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72(2), 147-156. doi:10.1016/j.jfoodeng.2004.11.031 | es_ES |
dc.description.references | Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s1052623496303470 | es_ES |
dc.description.references | Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7 | es_ES |
dc.description.references | Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500-1508. doi:10.1016/j.foodchem.2009.01.078 | es_ES |
dc.description.references | Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of «Antioxidant Power»: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292 | es_ES |
dc.description.references | Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. doi:10.1021/jf048741x | es_ES |
dc.description.references | Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3 | es_ES |
dc.description.references | Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010 | es_ES |
dc.description.references | Darıcı, S., & Şen, S. (2015). Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat and Mass Transfer, 51(8), 1167-1176. doi:10.1007/s00231-014-1487-x | es_ES |
dc.description.references | García-Pérez, J. V., Rosselló, C., Cárcel, J. A., De la Fuente, S., & Mulet, A. (2006). Effect of Air Temperature on Convective Drying Assisted by High Power Ultrasound. Diffusion in Solids and Liquids, 563-574. doi:10.4028/3-908451-36-1.563 | es_ES |
dc.description.references | Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021 | es_ES |
dc.description.references | Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015 | es_ES |
dc.description.references | Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0 | es_ES |
dc.description.references | Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027 | es_ES |
dc.description.references | Rodríguez, Ó., Eim, V., Rosselló, C., Femenia, A., Cárcel, J. A., & Simal, S. (2017). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture, 98(5), 1660-1673. doi:10.1002/jsfa.8673 | es_ES |
dc.description.references | Sivakumaran, S., Huffman, L., Sivakumaran, S., & Drummond, L. (2018). The nutritional composition of Zespri® SunGold Kiwifruit and Zespri® Sweet Green Kiwifruit. Food Chemistry, 238, 195-202. doi:10.1016/j.foodchem.2016.08.118 | es_ES |
dc.description.references | Pal, R. S., Kumar, V. A., Arora, S., Sharma, A. K., Kumar, V., & Agrawal, S. (2015). Physicochemical and antioxidant properties of kiwifruit as a function of cultivar and fruit harvested month. Brazilian Archives of Biology and Technology, 58(2), 262-271. doi:10.1590/s1516-8913201500371 | es_ES |
dc.description.references | Ball, G. F. M. (2005). Vitamins In Foods. doi:10.1201/9781420026979 | es_ES |
dc.description.references | Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2-3), 165-173. doi:10.1016/j.fbp.2008.12.001 | es_ES |
dc.description.references | Izli, N., Izli, G., & Taskin, O. (2016). Drying kinetics, colour, total phenolic content and antioxidant capacity properties of kiwi dried by different methods. Journal of Food Measurement and Characterization, 11(1), 64-74. doi:10.1007/s11694-016-9372-6 | es_ES |
dc.description.references | Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445 | es_ES |
dc.description.references | Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001 | es_ES |
dc.description.references | Moreno, C., Brines, C., Mulet, A., Rosselló, C., & Cárcel, J. A. (2017). Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Drying Technology, 35(8), 957-968. doi:10.1080/07373937.2016.1256890 | es_ES |
dc.description.references | Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030 | es_ES |
dc.description.references | González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry, 60(48), 11850-11858. doi:10.1021/jf303047k | es_ES |
dc.description.references | Leontowicz, H., Leontowicz, M., Latocha, P., Jesion, I., Park, Y.-S., Katrich, E., … Gorinstein, S. (2016). Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia deliciosa ‘Hayward’ and Actinidia eriantha ‘Bidan’. Food Chemistry, 196, 281-291. doi:10.1016/j.foodchem.2015.08.127 | es_ES |