- -

Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pereira-Días, Leandro es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.date.accessioned 2020-12-12T04:31:45Z
dc.date.available 2020-12-12T04:31:45Z
dc.date.issued 2019-05-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156935
dc.description.abstract [EN] Pepper (Capsicum spp.) is one of the most important vegetable crops; however, pepper genomic studies lag behind those of other important Solanaceae. Here we present the results of a high-throughput genotyping-by-sequencing (GBS) study of a collection of 190 Capsicum spp. accessions, including 183 of five cultivated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens) and seven of the wild form C. annuum var. glabriusculum. Sequencing generated 6,766,231 high-quality read tags, of which 40.7% were successfully aligned to the reference genome. SNP calling yielded 4083 highly informative segregating SNPs. Genetic diversity and relationships of a subset of 148 accessions, of which a complete passport information was available, was studied using principal components analysis (PCA), discriminant analysis of principal components (DAPC), and phylogeny approaches. C. annuum, C. baccatum, and C. chinense were successfully separated by all methods. Our population was divided into seven clusters by DAPC, where C. frutescens accessions were clustered together with C. chinense. C. annuum var. glabriusculum accessions were spread into two distinct genetic pools, while European accessions were admixed and closely related. Separation of accessions was mainly associated to differences in fruit characteristics and origin. Phylogeny studies showed a close relation between Spanish and Mexican accessions, supporting the hypothesis that the first arose from a main genetic flow from the latter. Tajima's D statistic values were consistent with positive selection in the C. annuum clusters, possibly related to domestication or selection towards traits of interest. This work provides comprehensive and relevant information on the origin and relationships of Spanish landraces and for future association mapping studies in pepper. es_ES
dc.description.sponsorship This work has been financed by INIA projects RTA2013-00022-C02, RTA2014-00041-C02-02, and RF2010-00025-00-00, FEDER funds. Authors are also grateful to the different Research Institutions, scientists, and breeders, and PDOs and GPIs Regulatory Boards, included on Supplementary Data: Table 1 for providing part of the materials studied here. es_ES
dc.language Inglés es_ES
dc.publisher Springer Nature es_ES
dc.relation.ispartof Horticulture Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41438-019-0132-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RF2010-00025-00-00/ES/Consecución de una colección nuclear de pimiento y especies relacionadas (Capsicum spp.) basada en marcadores AFLPs y SSRs/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-02/ES/Obtención de patrones de pimiento tolerantes a bajos insumos de fósforo y genética de la adaptación radicular a estreses abióticos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Pereira-Días, L.; Vilanova Navarro, S.; Fita, A.; Prohens Tomás, J.; Rodríguez Burruezo, A. (2019). Genetic diversity, population structure and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research. 6:1-13. https://doi.org/10.1038/s41438-019-0132-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41438-019-0132-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2052-7276 es_ES
dc.identifier.pmid 31044080 es_ES
dc.identifier.pmcid PMC6491490 es_ES
dc.relation.pasarela S\386183 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references FAO. FAOSTAT Statistics Database. http://www.fao.org/faostat/ (2018). Accessed 20 Aug 2018. es_ES
dc.description.references Moscone, E. A. et al. The evolution of chili peppers (Capsicum—Solanaceae): a cytogenetic perspective. Acta Hortic. 745, 137–169 (2007). es_ES
dc.description.references DeWitt, D. & Bosland, P. W. Peppers of the World: An Identification Guide (Ten Speed Press, Berkeley, California, US, 1996). es_ES
dc.description.references Nuez, F., Ortega, R. G. & García, J. C. El Cultivo de Pimientos, Chiles y Ajies (Mundi-Prensa, Madrid, Spain, 2003). es_ES
dc.description.references Kraft, K. H. The Domestication of the Chile Pepper, Capsicum annuum: Genetic, Ecological, and Anthropogenic Patterns of Genetic Diversity. ProQuest Dissertations and Theses (2009). es_ES
dc.description.references Onus, A. N. & Pickersgill, B. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann. Bot. 94, 289–295 (2004). es_ES
dc.description.references Tong, N. & Bosland, P. W. Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 109, 71–77 (1999). es_ES
dc.description.references Ince, A. G., Karaca, M. & Onus, A. N. Genetic relationships within and between Capsicum species. Biochem. Genet. 48, 83–95 (2010). es_ES
dc.description.references Zijlstra, S., Purimahua, C. & Lindhout, P. Pollen tube growth in interspecific crosses between Capsicum species. Euphytica 26, 585–586 (1991). es_ES
dc.description.references Yoon, J., Cheol Yang, D., Wahng Do, J. & Guen Park, H. Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed. Sci. 56, 31–38 (2006). es_ES
dc.description.references Manzur, J. P., Fita, A., Prohens, J. & Rodríguez-Burruezo, A. Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated ají (Capsicum baccatum) accessions as donor parents. PLoS ONE 10, e0144142 (2015). es_ES
dc.description.references González-Pérez, S. et al. New insights into Capsicum spp. relatedness and the diversification process of Capsicum annuum in Spain. PLoS ONE 9, e116276 (2014). es_ES
dc.description.references Crosby, K. M. in Vegetables II (eds. Prohens, J., Nuez, F. & Carena, M. J.) 221–248 (Springer US, 2008). es_ES
dc.description.references Rodríguez-Burruezo, A., Pereira-Dias, L. & Fita, A. in Variedades Locales de Pimiento en España y Su Mejora Genética (eds. Galarreta de, J. I. R., Prohens, J. & Tierno, R.) 405–426 (Gráficas Irudi, Vitoria-Gasteiz, Spain, 2016). es_ES
dc.description.references Hammer, K., Arrowsmith, N. & Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90, 241–250 (2003). es_ES
dc.description.references Brugarolas, M., Martinez-Carrasco, L., Martinez-Poveda, A. & Ruiz, J. J. A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Span. J. Agric. Res. 7, 294–304 (2009). es_ES
dc.description.references Ashrafi, H. et al. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom. 13, 571 (2012). es_ES
dc.description.references Qin, C. et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl Acad. Sci. USA 111, 5135–5140 (2014). es_ES
dc.description.references Park, M. et al. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J. 69, 1018–1029 (2012). es_ES
dc.description.references Kim, S. et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46, 270–278 (2014). es_ES
dc.description.references Prohens, J. et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 158 (2017). es_ES
dc.description.references Ibiza, V. P., Blanca, J., Cañizares, J. & Nuez, F. Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet. Resour. Crop Evol. 59, 1077–1088 (2012). es_ES
dc.description.references He, J. et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5, 484 (2014). es_ES
dc.description.references Glaubitz, J. C. et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014). es_ES
dc.description.references Poland, J. & Rife, T. Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome 5, 92–102 (2012). es_ES
dc.description.references Gardner, K. M. et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 4, 1681–1687 (2014). es_ES
dc.description.references Chung, Y. S., Choi, S. C., Jun, T. H. & Kim, C. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425–431 (2017). es_ES
dc.description.references Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011). es_ES
dc.description.references Taranto, F., D’Agostino, N., Greco, B., Cardi, T. & Tripodi, P. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom. 17, 943 (2016). es_ES
dc.description.references Taitano, N. et al. Genomewide genotyping of a novel Mexican Chile Pepper collection illuminates the history of landrace differentiation after Capsicum annuum L. domestication. Evol. Appl. https://doi.org/10.1111/eva.12651 (2018). es_ES
dc.description.references Nimmakayala, P. et al. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front. Plant Sci. 7, 1646 (2016). es_ES
dc.description.references Nimmakayala, P. et al. Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci. Rep. 6, 38081 (2016). es_ES
dc.description.references Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990). es_ES
dc.description.references Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). es_ES
dc.description.references Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). es_ES
dc.description.references Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007). es_ES
dc.description.references Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). es_ES
dc.description.references Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). es_ES
dc.description.references R Development Core Team. R: A Language and Environment for Statistical Computing (2009). es_ES
dc.description.references Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012). es_ES
dc.description.references Wickham, H ggplot2: Elegant Graphics for Data Analysis (Springer, US, 2016). es_ES
dc.description.references Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008). es_ES
dc.description.references Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010). es_ES
dc.description.references Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011). es_ES
dc.description.references Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014). es_ES
dc.description.references Saitou, N. & Nei, M. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987). es_ES
dc.description.references Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). es_ES
dc.description.references Weir, B. & Clark Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984). es_ES
dc.description.references Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989). es_ES
dc.description.references Ahn, Y. K. et al. Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci. Rep. 8, 5188 (2018). es_ES
dc.description.references Sonah, H. et al. An improved Genotyping by Sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8, e54603 (2013). es_ES
dc.description.references Hulse-Kemp, A. M. et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic. Res. 5, 4 (2018). es_ES
dc.description.references Wakeley, J. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Tree 11, 158–163 (1996). es_ES
dc.description.references Eshbaugh, W. H. Genetic and biochemical systematic studies of chili peppers (Capsicum - Solanaceae). Bull. Torre. Bot. Club 102, 396 (1975). es_ES
dc.description.references Raw, A. Foraging behavior of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Ann. Bot. 85, 487–492 (2000). es_ES
dc.description.references Cheng, J. et al. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci. Rep. 6, 33293 (2016). es_ES
dc.description.references Lee, H. Y. et al. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 17, 142 (2016). es_ES
dc.description.references Nicolaï, M., Cantet, M., Lefebvre, V., Sage-Palloix, A. M. & Palloix, A. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol. 60, 2375–2390 (2013). es_ES
dc.description.references Andrews, J. Peppers: The Domesticated Capsicums (University of Texas Press, Austin, Texas, US, 1995). es_ES
dc.description.references Hayano-Kanashiro, C., Gámez-Meza, N. & Medina-Juárez, L. Á. Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci. 56, 1–11 (2016). es_ES
dc.description.references McLeod, M. J., Guttman, S. I. & Eshbaugh, W. H. Early evolution of chili peppers (Capsicum). Econ. Bot. 36, 361–368 (1982). es_ES
dc.description.references Pickersgill, B. Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot. 100, 925–940 (2007). es_ES
dc.description.references Walsh, B. M. & Hoot, S. B. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB‐rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162, 1409–1418 (2001). es_ES
dc.description.references McLeod, M. J., Eshbaugh, W. H. & Guttman, S. I. An electrophoretic study of Capsicum (Solanaceae): the purple flowered taxa. Bull. Torre. Bot. Club 106, 326 (1979). es_ES
dc.description.references Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014). es_ES
dc.description.references Bosland, P. W. & Votava, E. J. Peppers: Vegetable and Spice Capsicums (CABI, New York, US, 2012). es_ES
dc.description.references Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S. & Nuez, F. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum–chinense–frutescens complex. J. Agric. Food Chem. 58, 4388–4400 (2010). es_ES
dc.description.references Wang, L., Li, J., Zhao, J. & He, C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci. 6, 248 (2015). es_ES
dc.description.references Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: defining, estimating and interpreting Fst. Nat. Rev. Genet. 10, 639–650 (2009). es_ES
dc.description.references Barchi, L., Lefebvre, V., Sage-Palloix, A. M., Lanteri, S. & Palloix, A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor. Appl. Genet. 118, 1157–1171 (2009). es_ES
dc.description.references Han, K. et al. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 23, 81–91 (2016). es_ES
dc.description.references Hill, T. A. et al. Regions underlying population structure and the genomics of organ size determination in Capsicum annuum. Plant Genome 10, https://doi.org/10.3835/plantgenome2017.03.0026 (2017). es_ES
dc.description.references Yarnes, S. C. et al. Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56, 61–74 (2013). es_ES
dc.description.references Rao, G. U., Ben Chaim, A., Borovsky, Y. & Paran, I. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor. Appl. Genet. 106, 1457–1466 (2003). es_ES
dc.description.references Chaim, A., Borovsky, Y., De Jong, W. & Paran, I. Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor. Appl. Genet. 106, 889–894 (2003). es_ES
dc.description.references Moses, M. & Umaharan, P. Genetic structure and phylogenetic relationships of Capsicum chinense. J. Am. Soc. Hortic. Sci. 137, 250–262 (2012). es_ES
dc.description.references Albrecht, E., Zhang, D., Saftner, R. A. & Stommel, J. R. Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet. Resour. Crop Evol. 59, 517–538 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem